
August 16, 2007 © 2005–2007 SmartLabs Technology

D e v e l o p e r ’ s G u i d e 2 n d E d i t i o n

Developer’s Guide Page i

August 16, 2007 © 2005-2007 SmartLabs Technology

Contents at a Glance
INTRODUCTION.. 1
PART I — INSTEON BASICS .. 4

Chapter 1 — Getting Started Quickly ... 5
Chapter 2 — About This Developer’s Guide.. 8
Chapter 3 — INSTEON Overview.. 14
Chapter 4 — INSTEON Application Development Overview...................... 27

PART II — INSTEON REFERENCE .. 37
Chapter 5 — INSTEON Messages ... 38
Chapter 6 — INSTEON Signaling Details .. 56
Chapter 7 — INSTEON Device Networking ... 82
Chapter 8 — INSTEON Command Set ... 114
Chapter 9 — INSTEON BIOS (IBIOS) ... 166
Chapter 10 — INSTEON Modems.. 217
Chapter 11 — SALad Language Documentation 263
Chapter 12 — SmartLabs Device Manager (SDM) Reference.................. 336
Chapter 13 — INSTEON Hardware Documentation................................. 358

CONCLUSION.. 378
GLOSSARY.. 379
NOTES .. 384

Developer’s Guide Page ii

August 16, 2007 © 2005-2007 SmartLabs Technology

Full Table of Contents
INTRODUCTION.. 1
PART I — INSTEON BASICS .. 4

Chapter 1 — Getting Started Quickly ... 5
INSTEON Modem (IM) Quick Start... 6
PowerLinc Controller (PLC) Quick Start .. 7

Chapter 2 — About This Developer’s Guide.. 8
Other Documents Included by Reference.. 9

INSTEON Conformance Specification... 9
INSTEON Command Tables Document.. 9
INSTEON Device Categories and Product Keys Document.......................... 9

INSTEON Modem Spec Sheets ..10
IN2680A INSTEON Direct Powerline Modem Interface..............................10
IN2682A INSTEON Direct RF Modem Interface..10

Other INSTEON Documents of Interest ...10
INSTEON, the Details ..10
INSTEON Compared ..10

Document Conventions...11
Getting Help ...11
Legal Information ..12
Revision History ..13

Chapter 3 — INSTEON Overview.. 14
Why INSTEON? ...15
Hallmarks of INSTEON..17
INSTEON Specifications ..18
INSTEON Fundamentals..20

INSTEON Device Communication...21
INSTEON Message Repeating..23
INSTEON Peer-to-Peer Networking ..25
INSTEON ALL-Linking ..26

Chapter 4 — INSTEON Application Development Overview...................... 27
Interfacing to an INSTEON Network ...28

The SmartLabs PowerLinc Controller ..28
The SmartLabs Powerline Modem..29
Comparing the Powerline Modem (PLM) to the PowerLinc Controller (PLC).....29

Manager Applications ...31
INSTEON Modem Applications ...32
SALad Applications ..33

SALad Overview ...33
SALad Integrated Development Environment ..33
INSTEON SALad and PowerLinc Controller Architecture...............................35

INSTEON Developer’s Kits...36
Software Developer’s Kit ..36
Hardware Development Modules ...36

PART II — INSTEON REFERENCE .. 37
Chapter 5 — INSTEON Messages ... 38

INSTEON Message Structure ...39

Developer’s Guide Page iii

August 16, 2007 © 2005-2007 SmartLabs Technology

Message Lengths ..39
Standard-length Message..39
Extended-length Message..40

Message Fields ...41
Device Addresses ...41
Message Flags ...41

Message Type Flags...42
Extended Message Flag ..43
Message Retransmission Flags...43

Command 1 and 2..44
User Data ...44
Message Integrity Byte ...44

INSTEON Message Summary Table ..46
SD and ED Messages...46
SD ACK and SD NAK Messages ...47
SB Messages..47
SA ALL-Link Broadcast Messages...48
SC ALL-Link Cleanup Messages ...48
SC ACK and SC NAK Messages..48

INSTEON Message Repetition ..49
INSTEON Message Hopping ..49

Message Hopping Control ..49
Timeslot Synchronization ..49

INSTEON Message Retrying..54
i2 Engine Message Retrying ...54

Chapter 6 — INSTEON Signaling Details .. 56
INSTEON Powerline Signaling ..57

Powerline BPSK Modulation ..58
INSTEON Powerline Packets ...59
Powerline Packet Timing ..60
X10 Compatibility ...61
Powerline Message Timeslots..62

Standard-length Message Timeslots ..62
Extended-length Message Timeslots..62

INSTEON Full Message Cycle Times ...63
INSTEON Powerline Data Rates...64

INSTEON Second Generation i2/RF Signaling ...65
i2/RF Physical Layer ..65

i2/RF Center Frequency...65
i2/RF Modulation..65
i2/RF Data Encoding ...65
i2/RF Timing..66
i2/RF Range ..66

i2/RF Data Packets..67
i2/RF Sync Pattern ..68
i2/RF Sleep Codes...70
i2/RF Messages ..72

i2/RF Message Timing...72
i2/RF Message Retransmission ...72
i2/RF Message Structure ...73

i2/RF Wakeup Strategies..75
Wakeup During i2/RF Traffic ..75

Developer’s Guide Page iv

August 16, 2007 © 2005-2007 SmartLabs Technology

Wakeup with No i2/RF Traffic ...76
i2/RF Powerline Synchronization ...77

INSTEON First Generation i1/RF Signaling ...78
i1/RF Physical Layer ..78
i1/RF Messages ..79
i1/RF Timing ..79

INSTEON Simulcasting ...80
Powerline Simulcasting ..80
RF Simulcasting..81

Chapter 7 — INSTEON Device Networking ... 82
INSTEON Device Categories ..83

Currently Defined Device Categories..83
Device Categories and Subcategories...84
Determining an INSTEON Device’s DevCat Number....................................84

SET Button Pressed Broadcast Messages ...84
Responding to a Product Data Request Message85

Using DevCats to Qualify INSTEON Commands..86
INSTEON Product Database...87

IPK Support Requirements ...87
New INSTEON Devices ..87
Legacy INSTEON Devices without IPKs ..87

INSTEON Product Key and SubCat Assignments ..88
INSTEON Product Database (IPDB)..91

Local IPDB Server ..91
IPDB Record Fields ...91
IPDB Query Response...92

INSTEON Device ALL-Linking...93
INSTEON ALL-Link Groups..93

ALL-Link Group Behavior ...93
Number of ALL-Links Supported ...93
Controllers with Multiple Buttons per ALL-Link Group...............................94
ALL-Link Groups and ALL-Links ..94
Examples of ALL-Link Groups...95

Methods for ALL-Linking INSTEON Devices ...96
Manual ALL-Linking ..96
Electronic ALL-Linking...96
Example of an INSTEON ALL-Linking Session ...97

Example of an ALL-Link Command Sequence ..99
INSTEON ALL-Link Database...101

Linear ALL-Link Database (ALDB/L) ..102
ALDB/L Overview ..102
ALDB/L Record Format ...103
Adding Records to an ALDB/L..103
Deleting Records from an ALDB/L ..104
Searching an ALDB/L ...104

Threaded ALL-Link Database (ALDB/T)..105
ALDB/T Overview ..105
ALDB/T Record Format...105
ALDB/T Threads ..106
ALDB/T Record Control Field ...107
An Empty ALDB/T..108
Adding Records to an ALDB/T..109

Developer’s Guide Page v

August 16, 2007 © 2005-2007 SmartLabs Technology

Deleting Records from an ALDB/T ..110
Searching an ALDB/T ...110

ALDB Performance Comparison ..111
INSTEON Security..112

ALL-Linking Control ...112
Physical Possession of Devices ...112
Masking Non-linked Network Traffic ..112

Encryption within Extended-length Messages ..113
Chapter 8 — INSTEON Command Set ... 114

INSTEON Command Categories ...115
ALL-Link Commands..116

Universally-Required ALL-Link Command...116
ALL-Link Alias Commands ...116

Direct Commands ...118
Required Direct Commands ...118

Universally-Required Direct Commands ..118
Conditionally-Required Direct Commands..118
Required Direct Commands within a DevCat......................................118

Returned Data Following a Direct Command...119
Returning a NAK ...119
Returning an ACK..119
Returning Data Using Request/Response Commands120

User-Defined FX Commands ..121
Matching FX Usernames ...121
FX Command Definitions ..121

Data Transfer Commands..122
Broadcast Commands..123

Required Broadcast Commands..123
Universally-Required Broadcast Commands.......................................123
Conditionally-Required Broadcast Commands123

INSTEON Command Set Tables..124
INSTEON Direct Commands..125

INSTEON Standard-length Direct Commands..125
INSTEON Extended-length Direct Commands139

INSTEON ALL-Link Commands ..152
INSTEON Standard-length ALL-Link Commands152
INSTEON Extended-length ALL-Link Commands....................................154

INSTEON Broadcast Commands ..155
INSTEON Standard-length Broadcast Commands155
INSTEON Extended-length Broadcast Commands..................................156

Required INSTEON Commands ..157
Required Commands for All INSTEON Devices ...157
Required Commands for Some INSTEON Devices160
Required Commands for a Device Category ..160

INSTEON Command Number Assignment ..161
INSTEON Command Database (ICDB)...161

ICDB Lookup Keys ..161
ICDB Records...161

About INSTEON Peek and Poke Commands ...162
Using Peek and Poke Commands for One Byte ..162
Using the Block Data Transfer Command for Multiple Bytes.......................163
Peek and Poke Command Examples...164

Developer’s Guide Page vi

August 16, 2007 © 2005-2007 SmartLabs Technology

Chapter 9 — INSTEON BIOS (IBIOS) ... 166
IBIOS Flat Memory Model ...167

Flat Memory Addressing...168
Flat Memory Map ..170

i2 Engine Memory Map..170
i1 Engine Memory Map..178

IBIOS Events ..185
IBIOS Serial Communication Protocol and Settings192

IBIOS Serial Communication Protocol ..193
IBIOS RS232 Port Settings...193
IBIOS USB Serial Interface...194

IBIOS Serial Commands ...195
IBIOS Serial Command Table ...196
IBIOS Serial Command Examples..201

IBIOS Get Version..202
IBIOS Read and Write Memory...203
IBIOS Get Checksum on Region of Memory..204
IBIOS Send INSTEON ...205
IBIOS Receive INSTEON..206
IBIOS Send X10...207
IBIOS Simulated Event ...209

IBIOS INSTEON Engine ..211
IBIOS Software Realtime Clock/Calendar ..212
IBIOS X10 Signaling ..213
IBIOS Input/Output ...214

IBIOS LED Flasher ..214
IBIOS SET Button Handler..214

IBIOS Remote Debugging ...215
IBIOS Watchdog Timer...216

Chapter 10 — INSTEON Modems.. 217
IM Serial Communication Protocol and Settings..218

IM Serial Communication Protocol ...219
IM RS232 Port Settings..219
How to Quickly Start Communicating with an IM220

IM Power-up and Reset States...221
IM Power-up Behavior ...221
IM Factory Reset State ..221

IM Serial Commands..222
IM Serial Command Summary Table ..223
IM Serial Command Charts...227

INSTEON Message Handling...228
Send INSTEON Standard or Extended Message228
INSTEON Standard Message Received ..231
INSTEON Extended Message Received..232
Set INSTEON ACK Message Byte..234
Set INSTEON ACK Message Two Bytes..235
Set INSTEON NAK Message Byte ...236

X10 Message Handling ..237
Send X10 ...237
X10 Received..238

INSTEON ALL-Link Commands ...239
Send ALL-Link Command..239

Developer’s Guide Page vii

August 16, 2007 © 2005-2007 SmartLabs Technology

ALL-Link Cleanup Failure Report ..241
ALL-Link Cleanup Status Report...242

ALL-Linking Session Management ...243
Start ALL-Linking...243
Cancel ALL-Linking ..244
ALL-Linking Completed...245

ALL-Link Database Management...246
Get First ALL-Link Record ...246
Get Next ALL-Link Record ...247
Get ALL-Link Record for Sender...248
ALL-Link Record Response ..249
Manage ALL-Link Record ..250

IM Status Management ...252
Reset the IM...252
User Reset Detected ..253
Get IM Configuration..254
Set IM Configuration..255
Get IM Info...257
Set Host Device Category ...258
RF Sleep ..259

IM Input/Output ..260
Button Event Report ..260
LED On ..261
LED Off ..262

Chapter 11 — SALad Language Documentation 263
SALad Programming Guide..264

Structure of a SALad Program...265
The SALad Version of Hello World..267
SALad Event Handling ...268
Hello World 2 – Event Driven Version...270
SALad coreApp Program ..272
SALad Timers...273
SALad Remote Debugging ..274
Overwriting a SALad Application..274
Preventing a SALad Application from Running ...274

SALad Language Reference ...275
SALad Memory Addresses ..276
SALad Instruction Set..277

SALad Universal Addressing Module (UAM) ..278
SALad Parameter Encoding..279

Parameter Reference Tables..280
SALad Instruction Summary Table..281

SALad Integrated Development Environment User’s Guide...........................287
SALad IDE Quickstart ..288
IDE Main Window..291

IDE Menus ..292
Menu – File...293
Menu – Edit ..295
Menu – View...297
Menu – Project..298
Menu – Mode ..298
Menu – Virtual Devices...299

Developer’s Guide Page viii

August 16, 2007 © 2005-2007 SmartLabs Technology

Menu – Help ...300
IDE Toolbar...301

IDE Editor..303
IDE Watch Panel ...306
IDE Options Dialog Box..307

Options – General ..308
Options – Quick Tools ...308
Options – Debugging ..309
Options – Compiling ...309
Options – Communications ..310
Options – Unit Defaults ...311
Options – Directories ..311
Options – Editor...312
Options – Saving..313
Options – Loading ..314
Options – Project ...314

IDE Windows and Inspectors ..315
Compile Errors...316
Comm Window ..317

Comm Window – Raw Data...318
Comm Window – PLC Events...318
Comm Window – INSTEON Messages ...319
Comm Window – X10 Messages...320
Comm Window – Conversation ..321
Comm Window – ASCII Window ..322
Comm Window – Debug Window ...323
Comm Window – Date/Time..324

Trace ...325
PLC Database ..326
SIM Control...327

PLC Simulator Control Panel..328
PLC Simulator Memory Dump..329
PLC Simulator Trace ..330

IDE Virtual Devices ...331
PLC Simulator..332
Virtual Powerline..333
Virtual LampLinc ..334

IDE Keyboard Shortcuts...335
Chapter 12 — SmartLabs Device Manager (SDM) Reference.................. 336

SDM Introduction ..337
SDM Quick Test...338

SDM Test Using a Browser ...338
SDM Test Using SDM’s Main Window..339

SDM Commands..340
SDM Commands – Getting Started ..341
SDM Commands – Home Control...342
SDM Commands – Notification Responses ..343
SDM Commands – Direct Communications..344
SDM Commands – Memory ..345
SDM Commands – PLC Control ...347
SDM Commands – Device Manager Control...350
SDM Commands – ALL-Link Database Management352

Developer’s Guide Page ix

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Commands – Timers ..354
SDM Windows Registry Settings...357

Chapter 13 — INSTEON Hardware Documentation................................. 358
INSTEON Hardware Development Kit (HDK) Reference................................359

Hardware Development Kit Overview...359
Functional Block Diagram ..360
HDK Physical Diagrams ...361

Hardware Development Kit Schematics ..363
HDK Isolated Main Board Schematic ...364
HDK Non-Isolated Main Board Schematic...365
HDK Daughter Board Schematic ...366

SmartLabs Powerline Modem (PLM) Hardware Reference367
SmartLabs Powerline Modem (PLM) Main Board.......................................368

SmartLabs PLM Main Board Schematic ..369
SmartLabs PLM Main Board Bill of Materials ...370

SmartLabs PLM Serial (RS232) Daughter Board.......................................372
SmartLabs PLM Serial Daughter Board Schematic373
SmartLabs PLM Serial Daughter Board Bill of Materials374

SmartLabs PLM Ethernet (IP) Daughter Board...375
SmartLabs PLM Ethernet (IP) Daughter Board Schematic376
SmartLabs PLM Ethernet (IP) Daughter Board Bill of Materials377

CONCLUSION.. 378
GLOSSARY.. 379
NOTES .. 384

Developer’s Guide Page x

August 16, 2007 © 2005-2007 SmartLabs Technology

Publication Dates

Date Author Version

06-21-05 Bill Morgan Initial release.

10-14-05 Paul Darbee First Edition.

03-15-07 Paul Darbee Second Edition released for internal review.

08-16-07 Paul Darbee Second Edition.

Developer’s Guide Page xi

August 16, 2007 © 2005-2007 SmartLabs Technology

Preface to the Second Edition

Since the publication of the first edition of this INSTEON Developer’s Guide,
SmartLabs has made many improvements to INSTEON technology, thanks to real-
world experience shipping over 300,000 INSTEON products, and constructive
feedback from developers like you.

Because it has grown to book length, this second edition is now organized into
chapters. Chapter 10 covering INSTEON Modems is all new. The glossary at the end
can serve as a quick introduction to INSTEON for those new to the terminology.

The release of this second edition coincides with the release of the i2 INSTEON
Engine. The most notable feature of the i2 Engine is an all-new i2/RF protocol
documented in Chapter 6, INSTEON Signaling Details. Second-generation i2/RF
replaces the original i1/RF protocol, which only the SmartLabs SignaLinc™ RF Signal
Enhancer uses. Both i2/RF and i1/RF devices can coexist in the same INSTEON
network because they operate on different radio frequencies.

The i2 Engine also fully enables Extended-length INSTEON messages. Other
improvements include more robust broadcast messaging, an improved retry method
following data collisions, and 115.2 KBaud, 32-byte-buffered serial communications
with a host device.

SmartLabs is very happy to present this second edition of the INSTEON Developer’s
Guide. It is lengthy because it is comprehensive, but as with most reference works,
you will not have to read the whole book through. Use the table of contents and the
hyperlinks to get to the information you need quickly.

INSTEON is finding rapid acceptance among home builders, installers, and
consumers alike. Most popular home-control software supports it, and INSTEON now
powers a multitude of sensing and control devices. The momentum for INSTEON
grows daily.

We are eager to hear back from you. Our goal is to make INSTEON so easy to use
that it just becomes ‘part of the plumbing,’ enabling the end-to-end solutions that
consumers really want and you are developing.

Developer’s Guide Page 1

August 16, 2007 © 2005-2007 SmartLabs Technology

INTRODUCTION

A TV automatically turns on the surround sound amplifier, a smart microwave oven
downloads new cooking recipes, a thermostat automatically changes to its energy
saving setpoint when the security system is enabled, bathroom floors and towel
racks heat up when the bath runs, an email alert goes out when there is water in the
basement. When did the Jetson-style home of the future become a reality? When
INSTEON™—the new technology standard for advanced home control—arrived.
INSTEON enables product developers to create these distinctive solutions for
homeowners, and other advantages yet unimagined, by delivering on the promise of
a truly connected ‘smart home.’

INSTEON is a cost-effective Dual Mesh™ network technology optimized for home
management and control. INSTEON-networked Electronic Home Improvement™
products can interact with one another, and with people, in new ways that will
improve the comfort, safety, convenience and value of homes around the world.

For a brief introduction to INSTEON see Chapter 3 — INSTEON Overview14.

This Developer’s Guide is part of the INSTEON Software and Hardware Development
Kits that SmartLabs provides to Independent Software Vendors (ISVs) and Original
Equipment Manufacturers (OEMs) who wish to create software and hardware
systems that work with INSTEON.

Developer’s Guide Page 2

August 16, 2007 © 2005-2007 SmartLabs Technology

In This INSTEON Developer’s Guide
PART I — INSTEON BASICS4

Gives an overview of INSTEON, including the following chapters:

• Chapter 1 — Getting Started Quickly5
Points out the highlights of this Developer’s Guide for those who wish to start
coding as quickly as possible.

• Chapter 2 — About This Developer’s Guide8
Identifies related documents, typographic conventions, developer support
options, and legal information.

• Chapter 3 — INSTEON Overview14
Familiarizes you with the background, design goals, and capabilities of INSTEON.

• Chapter 4 — INSTEON Application Development Overview27
Explains how developers can create applications that orchestrate the behavior of
INSTEON-networked devices.

PART II — INSTEON REFERENCE37

• Provides complete reference documentation for INSTEON, including the following
chapters:

• Chapter 5 — INSTEON Messages38
Gives the structure and contents of INSTEON messages and discusses message
retransmission.

• Chapter 6 — INSTEON Signaling Details56
Explains how INSTEON messages are broken up into packets and transmitted
over both the powerline and radio using synchronous simulcasting.

• Chapter 7 — INSTEON Device Networking82
Covers INSTEON Device Categories and the INSTEON Product Database, explains
how devices are logically ALL-Linked together, and discusses INSTEON network
security.

• Chapter 8 — INSTEON Command Set114
Explains the different categories of INSTEON Commands, enumerates the
commands required for INSTEON conformance, and reprints the tables of
INSTEON Commands that were current as of the publication date of this
Developer’s Guide.

• Chapter 9 — INSTEON BIOS (IBIOS)166
Describes the INSTEON Basic Input/Output System as it is implemented in the
SmartLabs PowerLinc™ V2 Controller (PLC).

• Chapter 10 — INSTEON Modems217
Covers INSTEON Modems (IMs) and the functions that they implement.

• Chapter 11 — SALad Language Documentation263
Documents the SALad application programming language. SALad enables you to
write custom device personalities, install them on INSTEON devices, and debug
them remotely.

• Chapter 12 — SmartLabs Device Manager (SDM) Reference336
Describes the SmartLabs Device Manager program.

• Chapter 13 — INSTEON Hardware Documentation358
Describes the INSTEON Hardware Development Kit (HDK) for powerline
applications, and the SmartLabs Powerline Modem™ (PLM) using the IN2680A
chip.

Developer’s Guide Page 3

August 16, 2007 © 2005-2007 SmartLabs Technology

CONCLUSION378
Recaps the main features of INSTEON.

GLOSSARY379
Defines terms specific to INSTEON technology.

NOTES384
Contains footnotes referenced in the text.

Developer’s Guide Page 4

August 16, 2007 © 2005-2007 SmartLabs Technology

PART I — INSTEON BASICS

In Part I

Chapter 1 — Getting Started Quickly5
Points out the highlights of this Developer’s Guide for those who wish to start
coding as quickly as possible.

Chapter 2 — About This Developer’s Guide8
Identifies related documents, typographic conventions, developer support
options, and legal information.

Chapter 3 — INSTEON Overview14
Familiarizes you with the background, design goals, and capabilities of INSTEON.

Chapter 4 — INSTEON Application Development Overview27
Explains how developers can create applications that orchestrate the behavior of
INSTEON-networked devices.

Dev Guide, Chapter 1 Page 5

August 16, 2007 © 2005-2007 SmartLabs Technology

Chapter 1 — Getting Started Quickly

INSTEON devices communicate by sending INSTEON messages over an INSTEON
network. You can connect to an INSTEON network in two ways—with an INSTEON
Modem (IM) module, such as the The SmartLabs Powerline Modem29 (PLM) or chip
(see Chapter 10 — INSTEON Modems217), or with The SmartLabs PowerLinc
Controller28 (PLC).

The SmartLabs Powerline Modem™ (PLM) is an INSTEON device that also has a serial
port that you connect to your PC (an Ethernet interface is under development). It
uses an IN2680A Powerline Modem chip that offers a simple set of ASCII commands
for interacting with INSTEON devices.

If you wish to build a custom INSTEON device using IM technology, you can interface
an IN2680A Powerline Modem chip or an IN2682A RF Modem chip to a
microcontroller of your choice. As an alternative, you can build a custom daughter
board that fits within a PLM module. You can find hardware reference designs for
such custom devices in Chapter 13 — INSTEON Hardware Documentation358.

The SmartLabs PowerLinc V2 Controller™ (PLC) is an INSTEON network interface
device that also has a serial port (RS232 or USB) that you connect to your PC. You
can write applications that run on the PLC using tools documented in the SALad
Integrated Development Environment User’s Guide287. If you wish, you can create
applications that will run on the PLC in standalone mode without any connection to a
PC.

In This Chapter

INSTEON Modem (IM) Quick Start6
Refer to this section if you are using a SmartLabs Powerline Modem™ (PLM) or
one of the INSTEON Modem chips.

PowerLinc Controller (PLC) Quick Start7
Refer to this section if you are using a SmartLabs PowerLinc Controller (PLC).

Dev Guide, Chapter 1 Page 6

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Modem (IM) Quick Start
What to Look at First

For an accelerated introduction to using the SmartLabs Powerline Modem™ (PLM) or
one of the INSTEON Modem chips to control and program INSTEON devices, follow
these steps in sequence:

1. Review the INSTEON Modem Applications32 section and the INSTEON Device
Communication21 diagram to see how things fit together.

2. Review the IM Serial Communication Protocol219 section to see how the serial
protocol works.

3. Review the IM Serial Commands222 section to see how to use IM Serial
Commands directly.

4. Review Chapter 5 — INSTEON Messages38 for more detailed information on the
INSTEON protocol.

5. Review Chapter 7 — INSTEON Device Networking82 for details about INSTEON
device categories, device ALL-Linking, and security issues.

IM-Related Summary Tables
Sections of this Developer’s Guide that you will reference often are:

1. The INSTEON Message Summary Table46, which enumerates all possible INSTEON
message types.

2. The INSTEON Command Set Tables124, which enumerate all of the INSTEON
Commands that can appear in INSTEON messages.

3. The IM Serial Command Summary Table223 and IM Serial Command Charts227,
which enumerate all of the commands for interacting serially with an INSTEON
Modem.

Dev Guide, Chapter 1 Page 7

August 16, 2007 © 2005-2007 SmartLabs Technology

PowerLinc Controller (PLC) Quick Start
What to Look at First

For an accelerated introduction to using the PLC and SALad to control and program
INSTEON devices, follow these steps in sequence:

4. Review the INSTEON SALad and PowerLinc Controller Architecture35 nd INSTEON
Device Communication21 diagrams to see how things fit together.

5. Review the IBIOS Serial Communication Protocol and Settings192 ection to see
how the serial protocol works.

6. Review the IBIOS Serial Command Examples201 ection to see how to use IBIOS
Serial Commands directly.

7. Review the SALad IDE Quickstart288 ection.

8. Review Chapter 5 — INSTEON Messages38 for more detailed information on the
INSTEON protocol.

9. Review Chapter 7 — INSTEON Device Networking82 for details about INSTEON
device categories, device ALL-Linking, and security issues.

PLC-Related Summary Tables
Sections of this Developer’s Guide that you will reference often are:

1. The INSTEON Message Summary Table46, which enumerates all possible INSTEON
message types.

2. The INSTEON Command Set Tables124, which enumerate all of the INSTEON
Commands that can appear in INSTEON messages.

3. The IBIOS Event Summary Table185, which enumerates all of the events that
IBIOS can generate.

4. The IBIOS Serial Command Summary Table197, which enumerates all of the
commands for interacting serially with the PLC.

5. The Flat Memory Map170, which shows where everything is in the PLC’s memory.

6. The SALad Instruction Summary Table281, which lists the SALad instruction set.

Dev Guide, Chapter 2 Page 8

August 16, 2007 © 2005-2007 SmartLabs Technology

Chapter 2 — About This Developer’s
Guide

In This Chapter

Other Documents Included by Reference9
Lists separate, frequently-updated documents considered part of this Developer’s
Guide.

Document Conventions11
Gives the typographic conventions used in this document.

Getting Help11
Provides sources of additional support for developers.

Legal Information12
Gives the Terms of Use plus trademark, patent, and copyright information.

Revision History13
Shows a list of changes to this document.

Dev Guide, Chapter 2 Page 9

August 16, 2007 © 2005-2007 SmartLabs Technology

Other Documents Included by
Reference

Although this Developer’s Guide is largely self-contained, there are aspects of
INSTEON technology, such as listings of INSTEON Commands, INSTEON Device
Categories, and INSTEON Product Keys, that require continuous updating as
developers create new INSTEON products. Accordingly, SmartLabs maintains
separate documents for that kind of information.

Readers should consider the documents listed in this section as part of this
document. They are available for downloading at www.insteon.net.

INSTEON Conformance Specification
The INSTEON Conformance Specification identifies those aspects of INSTEON that
assure interoperability with other INSTEON products. The Conformance Spec
assumes that readers have already gained familiarity with INSTEON technology by
reading this Developer’s Guide.

INSTEON Command Tables Document
The current tables of INSTEON Commands are contained in a separate document
titled INSTEON Command Tables, which is integral to both the INSTEON
Conformance Specification and this Developer’s Guide.

The filename for that document is INSTEON Command Tables yyyymmddx.doc,
where yyyy is the year, mm is the month, dd is the day, and x is a daily version
letter beginning with a. Be sure to refer to the document with the latest date.

As a convenience, the tables contained in the version of that document that was
current as of the publication date of this Developer’s Guide are reprinted herein, in
the section INSTEON Command Set Tables124 of Chapter 8 — INSTEON Command
Set114.

INSTEON Device Categories and Product Keys
Document

The current table of INSTEON Device Categories (DevCats), Subcategories
(SubCats), and INSTEON Product Keys (IPKs) is contained in a separate document
titled INSTEON Device Categories and Product Keys, which is also integral to both
the INSTEON Conformance Specification and this Developer’s Guide.

The filename for that document is INSTEON DevCats and Product Keys
yyyymmddx.doc, where yyyy is the year, mm is the month, dd is the day, and x is a
daily version letter beginning with a. Be sure to refer to the document with the
latest date.

As a convenience, the tables contained in the version of that document that was
current as of the publication date of this Developer’s Guide are reprinted herein, in
the sections Currently Defined Device Categories83 and INSTEON Product Key and
SubCat Assignments88 of Chapter 7 — INSTEON Device Networking82.

http://www.insteon.net/�

Dev Guide, Chapter 2 Page 10

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Modem Spec Sheets
Developers will find the latest specifications for INSTEON modem ICs at
www.insteon.net.

IN2680A INSTEON Direct Powerline Modem Interface
The IN2680A is a one-chip solution that uses a simple ASCII serial interface to
connect a host device or system to an INSTEON network via the powerline.

IN2682A INSTEON Direct RF Modem Interface
The IN2682A is similar to the IN2680A Powerline Modem except that it connects to
an INSTEON network via radio.

Other INSTEON Documents of Interest
Developers can find additional information about INSTEON in the following white
papers.

INSTEON, the Details
This white paper (downloadable from www.insteon.net/pdf/insteondetails.pdf) is an
earlier account of the inner workings of INSTEON technology. For the latest
information covering all aspects of INSTEON in greater depth, however, developers
should refer to this Developer’s Guide.

INSTEON Compared
This white paper (downloadable from www.insteon.net/pdf/insteoncompared.pdf)
compares INSTEON to other technologies for home control, such as ZigBee, Z-Wave,
WiFi, HomePlug, and X10.

http://www.insteon.net/�
http://www.insteon.net/pdf/insteondetails.pdf�
http://www.insteon.net/pdf/insteoncompared.pdf�

Dev Guide, Chapter 2 Page 11

August 16, 2007 © 2005-2007 SmartLabs Technology

Document Conventions
The following table shows the typographic conventions used in this INSTEON
Developer’s Guide.

Convention Description Example

Monospace Indicates source code, code examples,
code lines embedded in text, and
variables and code elements

DST EQU 0x0580

Angle Brackets < and > Indicates user-supplied parameters <Address MSB>

Vertical Bar | Indicates a choice of one of several
alternatives

<0x06 (ACK) | 0x15 (NAK)>

Ellipsis … Used to imply additional text “Text …”

0xNN Hexadecimal number 0xFF, 0x29, 0x89AB

⇒ Range of values, including the
beginning and ending values

0x00 ⇒ 0x0D

Hyperlinks Links to other parts of this document
or to the Internet

Document Conventions

Subscripts Page number references for hyperlinks Document Conventions11

Getting Help
INSTEON Support

SmartLabs is keenly interested in supporting the community of INSTEON developers.
If you are having trouble finding the answers you need in this INSTEON Developer’s
Guide, you can get more help by accessing the INSTEON Developer’s Forum or by
emailing sdk@insteon.net.

INSTEON Developer’s Forum
When you purchased the INSTEON Software Developer’s Kit, you received a
username and password for accessing the Developer’s Forum at
http://insteon.net/sdk/forum. The Forum contains a wealth of information for
developers, including

• Frequently asked questions

• Software downloads, including the SALad IDE (Integrated Development
Environment), and SmartLabs Device Manager

• Documentation updates

• Sample code

• Discussion forums

Providing Feedback
To provide feedback about this documentation, go to the INSTEON Developer’s
Forum or send email to sdk@insteon.net.

mailto:sdk@insteon.net�
http://insteon.net/sdk/forum�
mailto:sdk@insteon.net�

Dev Guide, Chapter 2 Page 12

August 16, 2007 © 2005-2007 SmartLabs Technology

Legal Information
Terms of Use

This INSTEON Developer’s Guide is supplied to you by SmartLabs, Inc. (SmartLabs)
in consideration of your agreement to the following terms. Your use or installation of
this INSTEON Developer’s Guide constitutes acceptance of these terms. If you do
not agree with these terms, please do not use or install this INSTEON Developer’s
Guide.

In consideration of your agreement to abide by the following terms, and subject to
these terms, SmartLabs grants you a personal, non-exclusive license, under
SmartLabs’ intellectual property rights in this INSTEON Developer’s Guide, to use
this INSTEON Developer’s Guide; provided that no license is granted herein under
any patents that may be infringed by your works, modifications of works, derivative
works or by other works in which the information in this INSTEON Developer’s Guide
may be incorporated. No names, trademarks, service marks or logos of SmartLabs,
Inc. or INSTEON may be used to endorse or promote products derived from the
INSTEON Developer’s Guide without specific prior written permission from
SmartLabs, Inc. Except as expressly stated herein, no other rights or licenses,
express or implied, are granted by SmartLabs and nothing herein grants any license
under any patents except claims of SmartLabs patents that cover this INSTEON
Developer’s Guide as originally provided by SmartLabs, and only to the extent
necessary to use this INSTEON Developer’s Guide as originally provided by
SmartLabs. SmartLabs provides this INSTEON Developer’s Guide on an "AS IS"
basis.

SMARTLABS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THIS
INSTEON DEVELOPER’S GUIDE OR ITS USE, ALONE OR IN COMBINATION WITH ANY
PRODUCT.

IN NO EVENT SHALL SMARTLABS BE LIABLE FOR ANY SPECIAL, INDIRECT,
INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE,
REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THIS INSTEON
DEVELOPER’S GUIDE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF
CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE,
EVEN IF SMARTLABS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Trademarks and Patents
SmartLabs, Smarthome, INSTEON, Dual Mesh, BiPHY, ALL-Link, Powerline Modem,
PowerLinc, ControLinc, LampLinc, SwitchLinc, RemoteLinc, Electronic Home
Improvement, SmartLabs Device Manager, Home Network Language, and Plug-n-Tap
are trademarks of SmartLabs, Inc.

INSTEON networking technology is covered by pending U.S. and foreign patents.

Copyright
© Copyright 2005-2007 SmartLabs, Inc., 16542 Millikan Ave., Irvine, CA 92606-
5027; 800-SMARTHOME (800-762-7846), 949-221-9200, www.smartlabsinc.com.
All rights reserved.

http://www.smarthome.com/�

Dev Guide, Chapter 2 Page 13

August 16, 2007 © 2005-2007 SmartLabs Technology

Revision History
Release
Date

Author Description

03-15-07 PVD 2nd Edition printed for review, 20 copies.

03-27-07 PVD Fixed bytecount in IM Command 0x62 Send INSTEON Standard or Extended
Message.

03-28-07 PVD Added IM Command 0x58 ALL-Link Cleanup Status Report.

03-29-07 PVD Updated explanation of IM Command 0x6F Manage ALL-Link Record.

04-02-07 PVD Updated explanation of IM Commands 0x61 Send ALL-Link Command, 0x56
ALL-Link Cleanup Failure Report, and 0x58 ALL-Link Cleanup Status Report.

04-06-07 PVD IM Command 0x58 ALL-Link Cleanup Status Report also sent when IM
interrupts its own Cleanup sequence.

04-17-07 PVD Corrected <X10 Flag> value in IM Commands 0x63 Send X10 and 0x52 X10
Received.

06-06-07 PVD Clarified IBIOS Command 0x4F INSTEON Message Received after NAK.

06-14-07 PVD Corrected nominal INSTEON powerline packet timing (-876 to 947 µs).

08-14-07 PVD Updated INSTEON Command Set Tables section from INSTEON Command
Tables 20070816a.doc, and INSTEON Product Key and SubCat Assignments
section from INSTEON DevCats and Product Keys 20060814a.doc.
INSTEON Command ED 0x2F00 Read/Write ALDB is now required for i2.

Dev Guide, Chapter 3 Page 14

August 16, 2007 © 2005-2007 SmartLabs Technology

Chapter 3 — INSTEON Overview

INSTEON enables simple, low-cost devices to be networked together using the
powerline, radio frequency (RF), or both. All INSTEON devices are peers, meaning
that any device can transmit, receive, or repeat1 other messages, without requiring a
master controller or complex routing software. Adding more devices makes an
INSTEON network more robust, by virtue of a simple protocol for communication
retransmissions and retries. On the powerline, INSTEON devices are compatible2
with legacy X10 devices.

This chapter explains why INSTEON has these properties and explains them further
without going into the details.

In This Chapter

Why INSTEON?15
Explains why SmartLabs undertook the development of INSTEON.

Hallmarks of INSTEON17
Gives the ‘project pillars’ and main properties of INSTEON.

INSTEON Specifications18
Shows the main features of INSTEON in table form.

INSTEON Fundamentals20
Shows how INSTEON devices communicate using both powerline and radio, how
all INSTEON devices repeat1 INSTEON messages, and how all INSTEON devices
are peers.

Dev Guide, Chapter 3 Page 15

August 16, 2007 © 2005-2007 SmartLabs Technology

Why INSTEON?
INSTEON is the creation of SmartLabs, the world’s leading authority on electronic
home improvement. SmartLabs is organized into three divisions—Smarthome.com,
“the Amazon of electronic home improvement,” SmartLabs Design, creators of best-
in-class home control products, and SmartLabs Technology, the pioneering architects
of INSTEON. With Smarthome.com’s global distribution channel, SmartLabs Design’s
product development and manufacturing resources, and SmartLabs Technology’s
ongoing innovation, SmartLabs is uniquely positioned to support and encourage
INSTEON product developers.

But why did SmartLabs undertake the complex task of creating an entirely new
home-control networking technology in the first place?

SmartLabs has been a leading supplier of devices and equipment to home
automation installers and enthusiasts since 1992. Now selling over 5,000 products
into more than 130 countries, SmartLabs has first-hand experience dealing directly
with people all over the world who have installed lighting control, whole-house
automation, security and surveillance systems, pet care devices, gadgets, and home
entertainment equipment. Over the years, by talking to thousands of customers
through its person-to-person customer support operation, SmartLabs has become
increasingly concerned about the mismatch between the dream of living in a
responsive, aware, automated home and the reality of existing home-control
technologies.

Today’s homes are stuffed with high-tech appliances, entertainment gear,
computers, and communications gadgets. Utilities, such as electricity, lighting,
plumbing, heating and air conditioning are so much a part of modern life that they
almost go unnoticed. But these systems and devices all act independently of each
other—there still is nothing that can link them all together. Houses don’t know that
people live in them. Lights happily burn when no one needs them, HVAC is
insensitive to the location and comfort of people, pipes can burst without anyone
being notified, and sprinklers dutifully water the lawn even while it’s raining.

For a collection of independent objects to behave with a unified purpose, the objects
must be able to communicate with each other. When they do, new, sometimes-
unpredictable properties often emerge. In biology, animals emerged when nervous
systems evolved. The Internet emerged when telecommunications linked computers
together. The global economy emerges from transactions involving a staggering
amount of communication. But there is no such communicating infrastructure in our
homes out of which we might expect new levels of comfort, safety and convenience
to emerge. There is nothing we use routinely in our homes that links our light
switches or our door locks, for instance, to our PCs or our remote controls.

It’s not that such systems don’t exist at all. Just as there were automobiles for
decades before Henry Ford made cars available to everyone, there are now and have
been for some time systems that can perform home automation tasks. On the high
end, all kinds of customized systems are available for the affluent, just as the rich
could buy a Stanley Steamer or a Hupmobile in the late 1800s. At the low end, X10
powerline signaling technology has been around since the 1970s, but its early
adoption is its limiting factor—it is too unreliable and inflexible to be useful as an
infrastructure network.

SmartLabs is a major distributor of devices that use X10 signaling. In 1997, aware
of the reliability problems its customers were having with X10 devices available at

Dev Guide, Chapter 3 Page 16

August 16, 2007 © 2005-2007 SmartLabs Technology

the time, SmartLabs developed and began manufacturing its own ‘Linc’ series of
improved X10 devices, including controllers, dimmers, switches, computer interfaces
and signal boosters. Despite the enhanced performance enjoyed by Linc products, it
was still mostly do-it-yourselfers and hobbyists who were buying and installing them.

SmartLabs knew that a far more robust and flexible networking standard would have
to replace X10 before a truly intelligent home could emerge. SmartLabs wanted a
technology that would meet the simplicity, reliability, and cost expectations of the
masses—mainstream consumers who want immediate benefits, not toys.

In 2001, SmartLabs’ engineers were well aware of efforts by others to bring about
the home of the future. The aging X10 protocol was simply too limiting with its tiny
command set and unacknowledged, ‘press and pray’ signaling over the powerline.
CEBus had tried to be everything to everybody, suffering from high cost due to
overdesign by a committee of engineers. Although CEBus did become an official
standard (EIA-600), developers did not incorporate it into real-world products.

Radio-only communication protocols, such as Z-Wave and ZigBee, not only required
complex routing strategies and a confusing array of different types of network
masters, slaves, and other modules, but radio alone might not be reliable enough
when installed in metal switch junction boxes or other RF-blocking locations.

Bluetooth radio has too short a range, WiFi radio is too expensive, and high-speed
powerline protocols are far too complex to be built into commodity products such as
light switches, door locks, or thermostats. Overall, it seemed that everything
proposed or available was too overdesigned and therefore would cost too much to
become a commodity for the masses in the global economy.

So, in 2001, SmartLabs decided to take its destiny into its own hands and set out to
specify an ideal home control network, one that would be simple, robust and
inexpensive enough to link everything to everything else. INSTEON was born.

Dev Guide, Chapter 3 Page 17

August 16, 2007 © 2005-2007 SmartLabs Technology

Hallmarks of INSTEON
These are the project pillars that SmartLabs decided upon to guide the development
of INSTEON. Products networked with INSTEON had to be:

Instantly Responsive
INSTEON devices respond to commands with no perceptible delay. INSTEON’s
signaling speed is optimized for home control—fast enough for quick response, while
still allowing reliable networking using low-cost components.

Easy to Install
Installation in existing homes does not require any new wiring, because INSTEON
products communicate over powerline wires or they use the airwaves. Users never
have to deal with network enrollment issues because all INSTEON devices have an ID
number pre-loaded at the factory—INSTEON devices join the network as soon as
they’re powered up.

Simple to Use
Getting one INSTEON device to control another is very simple—just press and hold a
button on each device for 10 seconds, and they’re linked. This ALL-Linking™
procedure guarantees that any INSTEON Controller can operate any INSTEON
Responder, now and in the future. Because INSTEON messaging is two-way,
INSTEON Controllers can confirm that commands get through, making INSTEON
products dependable and ‘guest friendly.’

Reliable
An INSTEON network becomes more robust and reliable as it is expanded because
every INSTEON device repeats1 messages received from other INSTEON devices.
Dual Mesh™ communications using both the powerline and the airwaves ensures that
there are multiple pathways for messages to travel. Whether by radio or powerline,
INSTEON messages get repeated in unison whenever multiple INSTEON devices hear
them. This message simulcasting is like an entire chorus singing a melody at once
instead of one singer at a time—the ‘music’ is much easier to hear.

Affordable
INSTEON software is simple and compact, because all INSTEON devices send and
receive messages in exactly the same way, without requiring a special network
controller or complex routing algorithms. The cost of networking products with
INSTEON is held to at an absolute minimum because INSTEON is designed
specifically for home control applications, and not for transporting large amounts of
data.

Compatible with X10
INSTEON and X10 signals can coexist with each other on the powerline without
mutual interference. Designers are free to create hybrid INSTEON/X10 products that
operate equally well in both environments, allowing current users of legacy X10
products to easily upgrade to INSTEON without making their investment in X10
obsolete.

Dev Guide, Chapter 3 Page 18

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Specifications
The most important property of INSTEON is its no-frills simplicity.

INSTEON messages are fixed in length and synchronized to the AC powerline zero
crossings. They do not contain routing information beyond a source and destination
address. INSTEON is reliable and affordable because it is optimized for command
and control, not high-speed data transport. INSTEON allows infrastructure devices
like light switches and sensors to be networked together in large numbers, at low
cost. INSTEON stands on its own, but can also bridge to other networks, such as
WiFi LANs, the Internet, telephony, and entertainment distribution systems. Such
bridging allows INSTEON to be part of very sophisticated integrated home control
environments.

The following table shows the main features of INSTEON at a glance.

INSTEON Property Specification

Network Dual Mesh™ (RF and powerline)
Peer-to-Peer
Mesh Topology
Unsupervised
No routing tables

Protocol All devices are two-way simulcasting Repeaters1
Messages acknowledged
Retry if not acknowledged
Synchronized to powerline

X10 Compatibility2 INSTEON devices can send and receive X10 Commands
INSTEON devices do not repeat or amplify X10
Instantaneous 13,165 bits/sec Data Rate
Sustained 2,880 bits/sec
Standard-length 10 Bytes Message Types
Extended-length 24 Bytes
From Address 3
To Address 3
Flags 1
Command 2
User Data 14 (Extended Messages only)

Message Format, Bytes

Message Integrity 1
Unique IDs 16,777,216
Product Keys 16,777,216
Device Categories 256
Commands 33,554,432

Devices Supported

ALL-Link Groups per
Controller Device

256

Dev Guide, Chapter 3 Page 19

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Property Specification

Members within an ALL-
Link Group

Limited only by memory

RAM 80 Bytes INSTEON Engine
Memory Requirements ROM 3K Bytes

RAM 256 Bytes
EEPROM 256 Bytes

Typical INSTEON Application
Memory Requirements
(Light Switch, Lamp Dimmer)

Flash 7K Bytes
Device Installation Plug-in

Wire-in
Battery Operated

Device Setup Plug-n-Tap™ manual ALL-Linking™
PC or Controller

Security Physical device possession
Address masking
Encrypted message payloads

Application Development INSTEON Modem chips and modules
IDE (Integrated Development Environment)
SALad interpreted language
Software and Hardware Development Kits
Frequency 131.65 KHz
Modulation BPSK
Min Transmit Level 3.16 Vpp into 5 Ohms
Min Receive Level 10 mV

Powerline Physical Layer

Phase Bridging INSTEON RF or hardware
Frequency 915 MHz
Modulation FSK
Sensitivity -103 dbm

i2/RF Physical Layer

Range 300 ft unobstructed line-of-sight,
half-wave dipole antenna, 0.1 raw
bit-error rate

Dev Guide, Chapter 3 Page 20

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Fundamentals
In This Section

INSTEON Device Communication21
Shows how INSTEON devices communicate over the powerline and via radio.

INSTEON Message Repeating23
Explains why network reliability improves when additional INSTEON devices are
added.

INSTEON Peer-to-Peer Networking25
Shows how any INSTEON device can act as a Controller (sending messages),
Responder (receiving messages), or Repeater1 (relaying messages).

INSTEON ALL-Linking26
Describes how any INSTEON Controller can operate any INSTEON Responder,
even when the Controller does not know the commands for the Responder.

Dev Guide, Chapter 3 Page 21

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Device Communication
Devices communicate with each other using the INSTEON protocol over the air via
radio frequency (RF) and over the powerline as illustrated below.

S

er
ia

l U
S

B
 /

R
S

23
2

/ E
th

er
ne

t

Home's Electrical Wiring Phase 1

RF INSTEON

Home's Electrical Wiring Phase 2

INSTEON
PL

Devices
X10 Devices

P
ow

er
lin

e
IN

S
TE

O
N

 &
 X

10

P
ow

er
lin

e
X

10

INSTEON
PL

Devices
X10 Devices

P
ow

er
lin

e
IN

S
TE

O
N

 &
 X

10

P
ow

er
lin

e
X

10

PC

INSTEON
PL / Serial

Device

P
ow

er
lin

e
IN

S
TE

O
N

 &
 X

10

INSTEON
PL / RF
Device

P
ow

er
lin

e
IN

S
TE

O
N

INSTEON
PL / RF
Device

P
ow

er
lin

e
IN

S
TE

O
N

INSTEON
RF

Devices

R
F

IN
S

TE
O

N

Electrical power is most commonly distributed to homes in North America as split-
phase 220-volt alternating current (220 VAC). At the main electrical junction box to
the home, the single three-wire 220 VAC powerline is split into a pair of two-wire
110 VAC powerlines, known as Phase 1 and Phase 2. Phase 1 wiring usually powers
half the circuits in the home, and Phase 2 powers the other half.

INSTEON devices communicate with each other over the powerline using the
INSTEON Powerline protocol, which will be described in detail below (see Chapter 5
— INSTEON Messages38 and Chapter 6 — INSTEON Signaling Details56).

Dev Guide, Chapter 3 Page 22

August 16, 2007 © 2005-2007 SmartLabs Technology

Existing X10 devices also communicate over the powerline using the X10 protocol.
The INSTEON Powerline protocol is compatible2 with the X10 protocol, meaning that
designers can create INSTEON devices that can also listen and talk to X10 devices.
X10 devices, however, are insensitive to the INSTEON Powerline protocol.

INSTEON devices containing RF hardware may optionally communicate with other
INSTEON RF devices using the INSTEON RF protocol.

INSTEON BiPHY™ devices (those that can use both the INSTEON Powerline protocol
and the INSTEON RF protocol) solve a significant problem encountered by devices
that can only communicate via the powerline. Powerline signals originating on the
opposite powerline phase from a powerline receiver are severely attenuated, because
there is no direct circuit connection for them to travel over.

A traditional solution to this problem is to connect a signal coupling device between
the powerline phases, either by hardwiring it in at a junction box or by plugging it
into a 220 VAC outlet. INSTEON automatically solves the powerline phase coupling
problem through the use of INSTEON BiPHY devices capable of both powerline and
RF messaging. INSTEON RF messaging bridges the powerline phases whenever at
least one INSTEON PL/RF device is installed on each powerline phase.

When suitably equipped with a dedicated serial interface, such as USB, RS232, or
Ethernet, INSTEON devices can also interface with computers and other digital
equipment. In the figure above, an INSTEON PL/Serial device is shown
communicating with a PC using a serial link. In the Software Developer’s Kit, that
device is a SmartLabs PowerLinc™ V2 Controller with a USB or RS232 interface (see
The SmartLabs PowerLinc Controller28 and Chapter 9 — INSTEON BIOS (IBIOS)166).

Serial communications can bridge networks of INSTEON devices to otherwise
incompatible networks of devices in a home, to computers, to other nodes on a local-
area network (LAN), or to the global Internet. Such connections to outside resources
allow networks of INSTEON devices to exhibit complex, adaptive, people-pleasing
behaviors. INSTEON devices capable of running downloadable SALad Applications
(see Chapter 11 — SALad Language Documentation263) can be upgraded to perform
very sophisticated functions, including functions not envisioned at the time of
manufacture or installation.

Dev Guide, Chapter 3 Page 23

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Message Repeating
The figure below shows how network reliability improves when additional INSTEON
devices are added. The drawing shows INSTEON devices that communicate by
powerline-only (PL), RF-only (RF), and both (BiPHY™ or BP).

Every INSTEON device is capable of repeating1 INSTEON messages. They will do this
automatically as soon as they are powered up—they do not need to be specially
installed using some network setup procedure. Adding more devices not only
increases the number of available pathways for messages to travel, but it also
increases the signal strength of repeated messages because every device that hears
a message repeats it in unison with all other devices that heard the same message.
Path diversity and simulcasting both result in a higher probability that a message will

PL
1A

RF
1

Powerline
Phase A

RF
3

RF
2

RF
4

Powerline
Phase B

PL
2A

PL
3A

PL
4A

PL
1B

PL
4B

PL
2B

PL
3B

BP
2

BP
1

Powerline-only Device

BiPHY (RF and Powerline) Device

RF-only Device

INSTEON RF Coverage

INSTEON Powerline Signal

INSTEON RF Signal

RF

PL

BP

Dev Guide, Chapter 3 Page 24

August 16, 2007 © 2005-2007 SmartLabs Technology

arrive at its intended destination, so the more devices in an INSTEON network, the
better.

As an example, suppose RF device RF1 desires to send a message to RF3, but RF3
is out of range. The message will still get through, however, because devices within
range of RF1, say BP1 and RF2, will receive the message and retransmit it by
simulcasting to other devices within range of themselves. In the drawing, BP1
might reach RF2, BP2, and RF4, and devices BP2 and RF1 might be within range of
the intended recipient, RF3. Therefore, there are many ways for a message to
travel: RF1 to RF2 to RF3 (1 retransmission), RF1 to BP1 to BP2 to RF3 (2
retransmissions), and RF1 to BP1 to RF2 to BP2 to RF3 (3 retransmissions) are
some examples.

On the powerline, path diversity has a similar beneficial effect. For example, the
drawing shows powerline device PL1B without a direct communication path to device
PL4B. In the real world, this might occur because of signal attenuation problems or
because a direct path through the electric wiring does not exist. But a message from
PL1B will still reach PL4B by taking a path through BP2 (1 retransmission), through
PL2B to BP2 (2 retransmissions), or through PL2B to BP2 to PL3B (3
retransmissions).

The figure also shows how messages can travel among powerline devices that are
installed on different phases of a home’s wiring. To accomplish phase bridging, at
least one INSTEON BiPHY RF/powerline device must be installed on each powerline
phase. In the drawing, BiPHY device BP1 is installed on phase A and BP2 is
installed on phase B. Direct RF paths between BP1 to BP2, or indirect paths using
RF2 or RF4 (1 retransmission) allow messages to propagate between the powerline
phases, even though there is no direct electrical connection.

With all devices repeating messages, there must be some mechanism for limiting the
number of times that a message may be retransmitted, or else messages might
propagate forever within the network. Network saturation by repeating messages is
known as a ‘data storm.’ The INSTEON protocol avoids this problem by limiting the
maximum number of times an individual message may be retransmitted to three
(see INSTEON Message Hopping49).

Dev Guide, Chapter 3 Page 25

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Peer-to-Peer Networking
All INSTEON devices are peers, meaning that any device can act as a Controller
(sending messages), Responder (receiving messages), or Repeater1 (relaying
messages).

This relationship is illustrated in the figure below, where INSTEON device 1, acting as
a Controller, sends messages to multiple INSTEON devices 2, 3, and 4 acting as
Responders. Multiple INSTEON devices 5, 6, and 7 acting as Controllers can also
send messages to a single INSTEON device 3 acting as a Responder.

Any INSTEON device can repeat1 messages, as with device B, below, which is shown
relaying a message from device A acting as a Controller to device C acting as a
Responder.

1
Controller

4
Responder

3
Responder

2
Responder

6
Controller

7
Controller

5
Controller

A
Controller

B
Repeater

C
Responder

Dev Guide, Chapter 3 Page 26

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON ALL-Linking
ALL-Linking allows any INSTEON Controller device to operate any INSTEON
Responder device, even if the Controller does not know any of the Direct Commands
that the Responder can execute. The principle is simple—during ALL-Linking to a
button on a Controller, a Responder memorizes the state that it is in at the time.
After ALL-Linking, pushing that button on the Controller causes the Responder to go
back into the state that it memorized when it ALL-Linked.

When a button on a Controller ALL-Links to a Responder, the Controller creates an
ALL-Link Group, which the Responder joins. Multiple Responders can join the same
ALL-Link Group, so it is possible for a single button push to cause an entire ensemble
of devices to recall their memorized states.

All of the Responder devices in the ALL-Link Group will recall their memorized states
simultaneously, because when the Controller’s button is pushed, the Controller first
sends out an ALL-Link Broadcast message to all of the Group members at once,
followed by individual ALL-Link Cleanup messages to each Group member in turn.

Dev Guide, Chapter 4 Page 27

August 16, 2007 © 2005-2007 SmartLabs Technology

Chapter 4 — INSTEON Application
Development Overview

INSTEON, with its no-nonsense emphasis on simplicity, reliability, and low cost, is
optimized as an infrastructure network. Common devices in the home, such as light
switches, door locks, thermostats, clocks, and entertainment systems currently do
not communicate with one another. INSTEON can change all that.

When devices are networked together, there is a potential for coordinated, adaptive
behavior that can bring a new, higher level of comfort, safety, and convenience to
living. But networking devices together cannot by itself change the behavior of the
devices. It is application-level software, created by developers, that transforms a
network of previously unrelated devices into a coordinated, adaptive, lifestyle-
enhancing system.

There are two basic kinds of applications that developers can create for INSTEON-
networked devices: External Applications and Internal Applications.

External Applications run on a computing device such as a PC or PDA. A special
type of INSTEON module called an INSTEON Bridge connects the computing device
to an INSTEON network. Manager Apps are External Applications that exchange
INSTEON messages directly with INSTEON devices via a Bridge.

Internal Applications run on INSTEON devices themselves. There are two ways to
create an Internal Application for an INSTEON device: you can write it to run on the
microcontroller of your choice and connect serially to an INSTEON network using an
INSTEON Modem (IM) chip, or you can write it in SmartLabs’ embedded interpreted
language, called SALad, which resides in the firmware of SALad-enabled INSTEON
devices.

In This Chapter

Interfacing to an INSTEON Network28
Describes INSTEON Bridge devices for connecting an INSTEON network to other
devices, systems, or networks.

Manager Applications31
Discusses INSTEON External Applications that send and receive INSTEON
messages directly.

INSTEON Modem Applications32
Explains how developers can create INSTEON Internal or External Applications to
run on any host device they choose, by connecting to an INSTEON Modem chip
via a serial port.

SALad Applications33
Explains how developers create INSTEON Internal Applications that run on
SALad-enabled INSTEON devices themselves.

INSTEON Developer’s Kits36
Describes the Software Developer’s Kit and various Hardware Development
Modules available to designers of INSTEON-enabled products.

Dev Guide, Chapter 4 Page 28

August 16, 2007 © 2005-2007 SmartLabs Technology

Interfacing to an INSTEON Network
An INSTEON device that connects an INSTEON network to the outside world is called
an INSTEON Bridge. There can be many kinds of INSTEON Bridges. One kind, an
INSTEON-to-Serial Bridge, connects an INSTEON network to a computing device like
a PC, a PDA, or a dedicated home-control module with a user interface and a serial
port. Another kind of Bridge, INSTEON-to-IP, connects an INSTEON network to a
LAN or the Internet, either with wires (like Ethernet) or wirelessly (like WiFi). Still
other INSTEON Bridges could connect to other networks such as wired or wireless
telephony, Bluetooth, ZigBee, WiMax, or whatever else emerges in the future.

The SmartLabs PowerLinc Controller
The PowerLinc™ V2 Controller (PLC) from SmartLabs is an example of an INSTEON-
to-Serial Bridge for connecting an INSTEON network to a computing device. PLCs
are currently available with either a USB or an RS232 serial interface. An Ethernet
interface, for connecting to a LAN or the Internet, is under development. For
comprehensive information about the firmware capabilities of the PLC, see Chapter 9
— INSTEON BIOS (IBIOS)166.

Using the PLC, application developers can create high-level user interfaces to devices
on an INSTEON network. Manager Apps are External Applications that run on a
computing device and use the PLC to directly send and receive INSTEON messages
to INSTEON devices. SALad Apps are Internal Applications that run on SALad-
enabled INSTEON devices themselves. The PLC is a SALad-enabled INSTEON device,
having a SALad language interpreter embedded in its firmware.

As shipped by SmartLabs, the PLC contains a 1200-byte SALad coreApp Program272
that performs a number of useful functions:

• When coreApp receives messages from INSTEON devices, it sends them to the
computing device via its serial port, and when it receives INSTEON-formatted
messages from the computing device via the serial port, it sends them out over
the INSTEON network.

• CoreApp handles ALL-Linking to other INSTEON devices and maintains an ALL-
Link Database.

• CoreApp is event-driven, meaning that it can send messages to the computing
device based on the time of day or other occurrences.

• CoreApp can send and receive X10 Commands.

Source code for coreApp is available to developers to modify for their own purposes.
Once programmed with an appropriately modified SALad App, the PLC can operate
on its own without being connected to a computing device.

As described in the section Masking Non-linked Network Traffic112, the PLC hides the
full addresses contained within INSTEON messages that it sees, unless the messages
are from devices that it is already ALL-Linked to. In particular, SALad Apps that the
PLC may be running cannot discover the addresses of previously unknown INSTEON
devices, so a hacker cannot write a SALad App that violates INSTEON security
protocols.

Dev Guide, Chapter 4 Page 29

August 16, 2007 © 2005-2007 SmartLabs Technology

The SmartLabs Powerline Modem
The SmartLabs Powerline Modem™ (PLM) is an INSTEON-to-Serial Bridge module
that plugs into a power outlet and also has a serial port that you connect to your PC
(an Ethernet interface is under development). It uses an IN2680A Powerline Modem
chip that offers a simple set of ASCII IM Serial Commands222 for interacting with
INSTEON devices.

The main functions of a PLM are:

• Interfacing to a host via an RS232 serial port.

• Interfacing to the powerline using an isolated power supply.

• Sending and receiving INSTEON messages.

• Sending and receiving X10 messages.

• ALL-Linking to other INSTEON devices and managing an ALL-Link Database.

• Sending ALL-Link Commands and transparently handling ALL-Link Cleanups.

• Managing a SET Button and LED.

See Chapter 10 — INSTEON Modems217 for more information.

The PLM uses a daughter board to implement serial communications with the host.
Daughter boards interface to the PLM’s main board via an 8-pin connector using TTL-
level serial communications. PLMs with RS232 daughter boards are currently
available, with USB and Ethernet versions under development.

You may communicate to an RS232 PLM via USB by using a USB-to-Serial adapter.
SmartLabs has found that Keyspan brand adapters, models USA-49WLC and USA-
19HS, provide excellent protocol translation and PLM compatibility.

If you wish, you may create a custom daughter board that fits within a PLM module.
You can find hardware reference designs for such custom devices in Chapter 13 —
INSTEON Hardware Documentation358. To support custom daughter boards,
SmartLabs offers a special version of the PLM with the following features:

• Uses the same case as the current PLM/PLC modules

• Has no labeling on the front cover or rear UL label.

• Does not have UL approval.

• Does not include a daughter board.

• Includes the plastic insert for an RJ-45 jack or a blank cover.

• Uses PLM firmware with auto EEPROM detection. When no external EEPROM
is detected, the PLM is limited to 31 ALL-Links.

Comparing the Powerline Modem (PLM) to
the PowerLinc Controller (PLC)

The PLM is an alternative to the PLC that uses an INSTEON Modem (IM) chip instead
of a SALad program to implement an interface between a host device and an
INSTEON network on the powerline. The PLM provides a simple set of ASCII IM
Serial Commands222 that perform most of the same functions as the PLC, but also
manage the details of ALL-Linking for the host.

Dev Guide, Chapter 4 Page 30

August 16, 2007 © 2005-2007 SmartLabs Technology

Unlike the PLC, a PLM cannot operate in standalone mode because it cannot run
application programs by itself. External applications designed to work with a PLC,
such as SmartLabs Device Manager (SDM), will not work with a PLM.

In summary, these are the main differences between the PLC and the PLM:

• The PLM has a simplified command set compared to the PLC.

• The PLM does not dupport SmartLabs Device Manager (SDM) running on a
host computer.

• The PLC runs a downloadable SALad application, such as the SALad coreApp
Program272, but the PLM cannot run applications of any kind. An embedded
host on a daughter card or else an always-on external host must be available
full time to run applications and manage the PLM.

• The PLM does not have an internal realtime clock.

• If fewer than 32 ALL-Links need to be supported, the PLM can run without
external EEPROM. The PLC must have external EEPROM to store a
downloadable SALad program.

Dev Guide, Chapter 4 Page 31

August 16, 2007 © 2005-2007 SmartLabs Technology

Manager Applications
An INSTEON Manager App is an External Application program that runs on a
computing device, like a PC or PDA, connected to an INSTEON network via an
INSTEON Bridge. Manager Apps can provide sophisticated user interfaces for
INSTEON devices, they can interact in complex ways with the outside world, and
they can orchestrate system behaviors that bring real lifestyle benefits to people.

A Manager App exchanges INSTEON messages directly with INSTEON devices, so it
must contain a software module that can translate between a user’s intentions and
the rules for composing and parsing INSTEON messages.

An example of a Manager App that encapsulates these functions is SmartLabs’
Device Manager (see Chapter 12 — SmartLabs Device Manager (SDM) Reference336),
a Windows program that connects to an INSTEON network via a PowerLinc™
Controller (PLC). SDM handles all the intricacies involved with sending and receiving
INSTEON messages via a PLC. To the outside world, it exposes an interface that
developers can connect their own custom top-level application layers to.

This topmost layer, often a user interface, communicates with SDM using the
Internet HTTP protocol or Microsoft’s ActiveX, so it can run on an Internet browser or
within a Windows program. SDM and the top layer communicate using a simple
text-based scripting language developed by SmartLabs called Home Network
Language™ (HNL).

SDM allows designers to concentrate on rapid application development of their end
products without having to deal directly with INSTEON messaging issues. Product
developers are encouraged to contact SmartLabs at 4info@insteon.net for more
information about acquiring and using SDM.

Dev Guide, Chapter 4 Page 32

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Modem Applications
INSTEON Modems (IMs) are single chips available from SmartLabs that use simple
ASCII commands over a serial port to interface to an INSTEON network (see Chapter
10 — INSTEON Modems217). The IN2680A INSTEON Direct Powerline Modem
Interface10 chip connects to an INSTEON network via the house wiring and the
IN2682A INSTEON Direct RF Modem Interface10 connects via radio. A BiPHY™
Modem chip that interfaces to both the powerline and radio is under development.

SmartLabs also offers a self-contained module built around an IN2680A Powerline
Modem chip: The SmartLabs Powerline Modem29 (PLM) communicates serially (using
RS232) with a PC. USB and Ethernet interfaces are under development.

Developers can create INSTEON Internal or External Applications that run on
whatever host device they choose, as long as the host can communicate serially with
the IM using the RS232 serial protocol. A microcontroller chip is the most common
choice for a host device in standalone INSTEON modules, although virtually any
hardware capable of executing applications and communicating serially can use an
IM to interface with an INSTEON network.

Perhaps the greatest advantage of using an IM is that developers can create
applications in a development environment that they are already comfortable with.
The ASCII IM Serial Commands222 are relatively few in number and easy to learn, so
development cycles can be short.

Dev Guide, Chapter 4 Page 33

August 16, 2007 © 2005-2007 SmartLabs Technology

SALad Applications
SALad is a language interpreter embedded in the firmware of SALad-enabled
INSTEON devices (see SALad Overview33). By writing and debugging SALad
programs in SmartLabs’ SALad Integrated Development Environment33, developers
can create INSTEON Internal Applications that run directly on SALad-enabled
devices.

Devices running SALad Apps can exhibit very sophisticated behavior. Moreover,
devices that have already been installed in the home can be upgraded by
downloading new SALad Apps to them. With INSTEON upgradeability, the world of
home control can dynamically adapt to people’s expectations and needs as the
marketplace evolves.

SALad Overview
Because the SALad instruction set is small, and addressing modes for the
instructions are highly symmetrical, SALad programs run fast and SALad object code
is very compact.

SALad is event driven. Events are triggered when a device receives an INSTEON
message, a user pushes a button, a timer expires, an X10 Command is received, and
so forth. As events occur, firmware in a SALad-enabled device posts event handles
to an event queue, and then starts the SALad program. The SALad program
determines what action to take based on the event that started it.

SALad programs can be downloaded into nonvolatile memory of INSTEON devices
using the INSTEON network itself, or via a serial link if the device has one. SALad
also contains a small debugger that allows programs to be started, stopped, and
single-stepped directly over the INSTEON network.

SALad programming mostly consists of writing event handlers. By following
examples in the INSTEON Software Development Kit, or by modifying SmartLabs’
SALad coreApp Program272, developers can rapidly create INSTEON devices with
wide-ranging capabilities. For more information about the SALad Language, consult
Chapter 11 — SALad Language Documentation263 in this Developer’s Guide, or
contact SmartLabs at 4info@insteon.net.

SALad Integrated Development
Environment

The SALad Integrated Development Environment (IDE) is a comprehensive, user-
friendly tool for creating and debugging Internal Applications that run directly on
SALad-enabled INSTEON devices. Using this tool, programmers can write, compile,
download, and debug SALad programs without ever having to leave the IDE. The
IDE is a Windows program that connects to an INSTEON network using a SmartLabs
PowerLinc™ Controller (see The SmartLabs PowerLinc Controller28).

The SALad IDE includes:

• A SALad Compiler that reads SALad language files and writes SALad object code,
error listings, and variable maps

• A communications module that can download SALad object code to an INSTEON
device via USB, RS232, or the INSTEON network itself

Dev Guide, Chapter 4 Page 34

August 16, 2007 © 2005-2007 SmartLabs Technology

• A multiple-file, color-contextual source code editor that automatically compiles
SALad programs on the fly

• Code templates for common tasks

• A real-time debugger based upon instantaneous feedback from a SALad-enabled
device

• A program tracer

• An interactive device conversation window for sending and receiving INSTEON,
X10, or ASCII messages

• A raw data window

• A PLC simulator for writing and debugging SALad Apps without actually being
connected to an INSTEON network

• INSTEON device diagnostics

• INSTEON network diagnostics

• A device ALL-Link Database manager

• A program listing formatter

For complete information on installing and using the SALad IDE, consult the SALad
Integrated Development Environment User’s Guide287 below.

Dev Guide, Chapter 4 Page 35

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON SALad and PowerLinc Controller
Architecture

This diagram shows how software solutions can be implemented using The
SmartLabs PowerLinc Controller28 as an INSTEON gateway/controller device.

Dev Guide, Chapter 4 Page 36

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Developer’s Kits
SmartLabs is committed to making the development process as easy as possible for
those who create products that can profit from INSTEON networking. For designers
who will be crafting new INSTEON devices, adding INSTEON networking to existing
devices, or developing External Applications for a network of INSTEON devices,
SmartLabs offers both a Software Developer’s Kit (SDK) and a series of Hardware
Development Modules, as well as extensive technical support.

Software Developer’s Kit
To encourage as many developers as possible to join the community of INSTEON
product creators, SmartLabs offers a comprehensive Software Developer’s Kit (SDK).
The INSTEON SDK includes:

• The INSTEON Integrated Development Environment (IDE)

• A SmartLabs PowerLinc™ V2 Controller (PLC) with either a USB or RS232 serial
interface

• A SmartLabs LampLinc™ V2 Dimmer module

• This INSTEON Developer’s Guide

• Access to technical support and peer networking on the INSTEON Internet Forum

• Source code to the SALad coreApp Program272 that runs on the PLC

• Sample SALad Applications

• Version maps for product upgrades

• Header files

Hardware Development Modules
SmartLabs has released a series of Hardware Development Modules. Currently
available modules include an isolated powerline Hardware Development Kit (HDK)
and a Powerline Modem™ (PLM). An RF development module is under development.

The isolated powerline HDK is essentially a PowerLinc™ Controller (PLC) with an
extender board that has a prototyping area and a hardware interface to internal
circuitry, including the microcontroller. With this module, designers can build and
debug hardware interfaces to controllers, sensors, or actuators that connect to an
INSTEON network. The isolated power supply for this module ensures that no
dangerous voltages are exposed. See INSTEON Hardware Development Kit (HDK)
Reference359 for details.

The SmartLabs Powerline Modem™ module used an IN2680A INSTEON Direct
Powerline Modem Interface10 chip on a Main Board, and a Daughter Board for host
interfacing or custom development. See SmartLabs Powerline Modem (PLM)
Hardware Reference367 for more information.

The RF development module uses an IN2682A INSTEON Direct RF Modem Interface10
chip. With this module, developers can create products that communicate via RF,
and only optionally communicate via the powerline. RF-only devices can be battery
operated, so this module is especially suited for developers of handheld INSTEON
devices.

Dev Guide, Chapter 5 Page 37

August 16, 2007 © 2005-2007 SmartLabs Technology

PART II — INSTEON REFERENCE

In Part II

Chapter 5 — INSTEON Messages38
Gives the structure and contents of INSTEON messages and discusses message
retransmission.

Chapter 6 — INSTEON Signaling Details56
Explains how INSTEON messages are broken up into packets and transmitted
over both the powerline and radio using synchronous simulcasting.

Chapter 7 — INSTEON Device Networking82
Covers INSTEON Device Categories and the INSTEON Product Database, explains
how devices are logically ALL-Linked together, and discusses INSTEON network
security.

Chapter 8 — INSTEON Command Set114
Explains the different categories of INSTEON Commands, enumerates the
Commands required for INSTEON conformance, and reprints the tables of
INSTEON Commands that were current as of the publication date of this
Developer’s Guide.

Chapter 9 — INSTEON BIOS (IBIOS)166
Documents the firmware running in the SmartLabs PowerLinc™ V2 Controller
(PLC).

Chapter 10 — INSTEON Modems217
Covers INSTEON Modems (IMs) and the functions that they implement.

Chapter 11 — SALad Language Documentation263
Documents the SALad application programming language and commands.

Chapter 12 — SmartLabs Device Manager (SDM) Reference336
Documents the SmartLabs Device Manager and commands.

Chapter 13 — INSTEON Hardware Documentation358
Describes the INSTEON Hardware Development Kit (HDK) for powerline
applications, and the SmartLabs Powerline Modem™ (PLM) using the IN2680A
chip.

Dev Guide, Chapter 5 Page 38

August 16, 2007 © 2005-2007 SmartLabs Technology

Chapter 5 — INSTEON Messages

INSTEON devices communicate by sending messages to one another. In the interest
of maximum simplicity, there are only two kinds of INSTEON messages: 10-byte
Standard-length messages and 24-byte Extended-length messages. The only
difference between the two is that Extended-length messages carry 14 bytes of
arbitrary User Data. They both carry a From Address, a To Address, a Message Flags
byte, two Command bytes, and a Message Integrity byte.

In This Chapter

INSTEON Message Structure39
Gives the details about the contents of the various fields in INSTEON messages.

INSTEON Message Summary Table46
Gives a single table showing the usage of all of the fields in all possible INSTEON
message types. Recaps the usage of all of the different message types.

INSTEON Message Repetition49
Explains how all INSTEON devices engage in retransmitting each other’s
messages so that an INSTEON network will become more reliable as more
devices are added.

Dev Guide, Chapter 5 Page 39

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Message Structure
INSTEON devices communicate with each other by sending fixed-length messages.
This section describes the two Message Lengths39 (Standard and Extended) and
explains the contents of the Message Fields41 within the messages. The next section,
INSTEON Message Summary Table46, presents this information more compactly.

Message Lengths
There are only two kinds of INSTEON messages, 10-byte Standard-length messages
and 24-byte Extended-length messages.

The only difference between the two is that the Extended-length message contains
14 User Data bytes not found in the Standard-length message. The remaining
information fields for both types of message are identical except for an Extended
Message Flag bit.

INSTEON Standard-length Message – 10 Bytes

3 Bytes 3 Bytes 1 Byte 2 Bytes 1 Byte
From Address To Address Flags Command 1, 2 CRC3

INSTEON Extended-length Message – 24 Bytes

3 Bytes 3 Bytes 1 Byte 2 Bytes 14 Bytes 1 Byte
From Address To Address Flags Command 1, 2 User Data CRC3

Standard-length Message
Standard-length messages are designed for direct command and control. The
payload is just two bytes, Command 1 and Command 2.

Data Bits Contents

From Address 24 Message Originator’s address
To Address 24 For Direct messages:

 Intended Recipient’s address
For Broadcast messages:
 Device Category, Subcategory
For ALL-Link Broadcast messages:
 ALL-Link Group Number [0 - 255]

1 Broadcast/NAK
1 ALL-Link Message Type
1 Acknowledgement

Extended Msg Flag 1 0 (Zero) for Standard-length messages
Hops Left 2 Counted down on each retransmission

Message Flags

Max Hops 2 Maximum number of retransmissions allowed
Command 1 8
Command 2 8

Command to execute

CRC3 8 Cyclic Redundancy Check

Dev Guide, Chapter 5 Page 40

August 16, 2007 © 2005-2007 SmartLabs Technology

Extended-length Message
In addition to the same fields found in Standard-length messages, Extended-length
messages carry 14 bytes of arbitrary User Data for downloads, uploads, encryption,
and advanced applications.

Data Bits Contents

From Address 24 Message Originator’s address
To Address 24 For Direct messages:

 Intended Recipient’s address
For Broadcast messages:
 Device Category, Subcategory
For ALL-Link Broadcast messages:
 ALL-Link Group Number [0 - 255]

1 Broadcast/NAK
1 ALL-Link Message Type
1 Acknowledgement

Extended Msg Flag 1 1 (One) for Extended-length messages
Hops Left 2 Counted down on each retransmission

Message Flags

Max Hops 2 Maximum number of retransmissions allowed
Command 1 8
Command 2 8

Command to execute

User Data 1 8
User Data 2 8
User Data 3 8
User Data 4 8
User Data 5 8
User Data 6 8
User Data 7 8
User Data 8 8
User Data 9 8
User Data 10 8
User Data 11 8
User Data 12 8
User Data 13 8
User Data 14 8

User defined data

CRC3 8 Cyclic Redundancy Check

Dev Guide, Chapter 5 Page 41

August 16, 2007 © 2005-2007 SmartLabs Technology

Message Fields
All INSTEON messages contain source and destination Device Addresses41, a
Message Flags41 byte, a 2-byte Command 1 and 244 payload, and a Message
Integrity Byte44. INSTEON Extended-length messages also carry 14 bytes of User
Data44.

Device Addresses
The first field in an INSTEON message is the From Address, a 24-bit (3-byte) number
that uniquely identifies the INSTEON device originating the message being sent.
There are 16,777,216 possible INSTEON devices identifiable by a 3-byte number.
This number can be thought of as an ID Code or, equivalently, as an address for an
INSTEON device. During manufacture, a unique ID Code is stored in each device in
nonvolatile memory.

The second field in an INSTEON message is the To Address, also a 24-bit (3-byte)
number. Most INSTEON messages are of the Direct type, where the intended
recipient is another single, unique INSTEON device.

If the message is indeed Direct (as determined by the Flags Byte), the To Address
contains the 3-byte unique ID Code for the intended recipient. However, INSTEON
messages can also be sent to all recipients within range, as Broadcast messages, or
they can be sent to all members of a group of devices, as ALL-Link Broadcast
messages. In the case of Broadcast messages, the To Address field contains a 1-
byte Device Category, a 1-byte Device Subcategory, and either 0xFF or a Firmware
Version byte. For ALL-Link Broadcast messages, the To Address field contains an
ALL-Link Group Number. ALL-Link Group Numbers only range from 0 to 255, given
by one byte, so the two most-significant bytes of the three-byte field will be zero.

Message Flags
The third field in an INSTEON message, the Message Flags byte, not only signifies
the Message Type but it also contains other information about the message. The
three most-significant bits, the Broadcast/NAK Flag (bit 7), the ALL-Link Flag (bit 6),
and the ACK Flag (bit 5) together indicate the Message Type. Message Types will be
explained in more detail in the next section (see Message Type Flags42). Bit 4, the
Extended Message Flag, is set to one if the message is an Extended-length message,
i.e. contains 14 User Data bytes, or else it is set to zero if the message is a
Standard-length message. The low nibble contains two two-bit fields, Hops Left (bits
3 and 2) and Max Hops (bits 1 and 0). These two fields control message
retransmission as explained below (see Message Retransmission Flags43).

The table below enumerates the meaning of the bit fields in the Message Flags byte.
The Broadcast/NAK Flag (bit 7, the most-significant byte), the ALL-Link Flag (bit 6),
and the ACK Flag (bit 5) together denote the eight possible Message Types.

Dev Guide, Chapter 5 Page 42

August 16, 2007 © 2005-2007 SmartLabs Technology

Bit Position Flag Meaning

Bit 7 (Broadcast /NAK)
(MSB)

Bit 6 (ALL-Link)

Bit 5 (Acknowledgement)

Message Type

100 = Broadcast Message

000 = Direct Message
001 = ACK of Direct Message
101 = NAK of Direct Message

110 = ALL-Link Broadcast Message
010 = ALL-Link Cleanup Message
011 = ACK of ALL-Link Cleanup Message
111 = NAK of ALL-Link Cleanup Message

Bit 4 Extended 1 = Extended-length message
0 = Standard-length Message

Bit 3

Bit 2

Hops Left
00 = 0 message retransmissions remaining
01 = 1 message retransmission remaining
10 = 2 message retransmissions remaining
11 = 3 message retransmissions remaining

Bit 1

Bit 0 (LSB)

Max Hops
00 = Do not retransmit this message
01 = Retransmit this message 1 time maximum
10 = Retransmit this message 2 times maximum
11 = Retransmit this message 3 times maximum

Message Type Flags
There are eight possible INSTEON Message Types given by the three Message Type
Flag Bits.

Message Types
To fully understand the eight Message Types, consider that there are five basic
classes of INSTEON messages: Broadcast, ALL-Link Broadcast, ALL-Link Cleanup,
Direct, and Acknowledgement.

Broadcast messages contain general information with no specific destination.
Directed to the community of all devices within range, they are mainly used during
device ALL-Linking (see SET Button Pressed Broadcast Messages84, below).
Broadcast messages are not acknowledged.

ALL-Link Broadcast messages are directed to a group of devices that have
previously been ALL-Linked to the message originator (see INSTEON ALL-Link
Groups93, below). ALL-Link Broadcast messages are a means for speeding up the
response to a command intended for multiple devices. They are not acknowledged
directly. Instead, after sending an ALL-Link Broadcast message to an ALL-Link
Group of devices, the message originator then sends an ALL-Link Cleanup message
addressed to each member of the ALL-Link Group individually, with the expectation
of an acknowledgement back from each device in turn.

Direct messages (sometimes referred to as Point-to-Point messages) are intended
for a single specific recipient. The recipient responds to Direct messages by
returning an Acknowledgement message.

Acknowledgement messages (ACK or NAK) are messages from the recipient to the
message originator in response to a Direct or ALL-Link Cleanup message. There is
no acknowledgement to a Broadcast or ALL-Link Broadcast message. In some cases,
when a Direct message specifically requests returned data, an ACK message may

Dev Guide, Chapter 5 Page 43

August 16, 2007 © 2005-2007 SmartLabs Technology

return one or two data bytes to the originator, or a NAK message may return an
error code.

Message Type Flag Bits
The Broadcast/NAK Flag (bit 7) will be set whenever the message is a Broadcast
message or an ALL-Link Broadcast message. In those two cases the
Acknowledgement Flag (bit 5) will be clear. If the Acknowledgement Flag is set, the
message is an Acknowledgement message. In that case the Broadcast/NAK Flag will
be set when the Acknowledgement message is a NAK, and it will be clear when the
Acknowledgement message is an ACK.

The ALL-Link Flag (bit 6) will be set to indicate that the message is an ALL-Link
Broadcast message or part of an ALL-Link Cleanup conversation. This flag will be
clear for general Broadcast messages and Direct conversations.

Now all eight Message Types can be enumerated as follows, where the three-bit field
is given in the order Bit 7, Bit 6, Bit 5.

• Broadcast messages are Message Type 100.

• Direct messages are 000.

• An ACK of a Direct message is 001

• A NAK of a Direct message is 101

• An ALL-Link Broadcast message is 110.

• ALL-Link Broadcasts are followed up by a series of ALL-Link Cleanup messages of
Message Type 010 to each member of the ALL-Link Group.

• Each recipient of an ALL-Link Cleanup message will return an acknowledgement
with an ALL-Link Cleanup ACK of Message Type 011 or an ALL-Link Cleanup NAK
of Message Type 111.

See the INSTEON Message Summary Table46 in the next section for a chart of all
possible message types.

Extended Message Flag
Bit 4 is the Extended Message Flag. This flag is set for 24-byte Extended-length
messages that contain a 14-byte User Data field, and the flag is clear for 10-byte
Standard-length messages that do not contain User Data.

Message Retransmission Flags
The remaining two flag fields, Max Hops and Hops Left, manage message
retransmission. As described above, all INSTEON devices are capable of repeating1
messages by receiving and retransmitting them. Without a mechanism for limiting
the number of times a message can be retransmitted, an uncontrolled ‘data storm’ of
endlessly repeated messages could saturate the network. To solve this problem,
INSTEON message originators set the 2-bit Max Hops field to a value of 0, 1, 2, or 3,
and they also set the 2-bit Hops Left field to the same value.

The standard value of Max Hops for Broadcast and ALL-Link Broadcast messages is
3. For Direct and ALL-Link Cleanup messages, the standard initial value of Max Hops
is 1. If INSTEON Message Retrying54 is necessary, INSTEON Engine firmware will
automatically increment Max Hops for each retry, up to the maximum value of 3.

A Max Hops value of zero tells other devices within range not to retransmit the
message. A higher Max Hops value tells devices receiving the message to retransmit
it depending on the Hops Left field. If the Hops Left value is one or more, the

Dev Guide, Chapter 5 Page 44

August 16, 2007 © 2005-2007 SmartLabs Technology

receiving device decrements the Hops Left value by one, then retransmits the
message with the new Hops Left value. Devices that receive a message with a Hops
Left value of zero will not retransmit that message. Also, a device that is the
intended recipient of a message will not retransmit the message, no matter what the
Hops Left value is. See INSTEON Message Hopping49 for more information.

Note that the designator Max Hops really means maximum retransmissions allowed.
All INSTEON messages ‘hop’ at least once, so the value in the Max Hops field is one
less than the number of times a message actually hops from one device to another.
Since the maximum value in this field is three, there can be four actual hops,
consisting of the original transmission and three retransmissions. Four hops can
span a chain of five devices. This situation is shown schematically below.

Device Number 1 2 3 4 5
Max Hops 3 3 3 3 3
Hops Left 3 3 → 2 2 → 1 1 → 0 0

Hop Number 1 2 3 4
Retransmission Number 0 1 2 3

Command 1 and 2
The fourth field in an INSTEON message is a two-byte Command, made up of
Command 1 and Command 2. The usage of this field depends on the Message Type
as explained below (see INSTEON Message Summary Table46 and Chapter 8 —
INSTEON Command Set114).

User Data
Only if the message is an Extended-length message, with the Extended Message Flag
set to one, will it contain the fourteen-byte User Data field. Extended-length Direct
Commands have a predefined User Data field, but developers may define their own
User Data fields by employing so-called FX Commands (see User-Defined FX
Commands121).

If more than 14 bytes of User Data need to be transmitted, multiple INSTEON
Extended-length messages will have to be sent using FX Commands. Users can
define a packetizing method for their data so that a receiving device can reliably
reassemble long messages. Encrypting User Data can provide private, secure
communications for sensitive applications such as security systems.

Message Integrity Byte
The last field in an INSTEON message is a one-byte CRC, or Cyclic Redundancy
Check. The INSTEON transmitting device computes the CRC over all the bytes in a
message beginning with the From Address. INSTEON uses a software-implemented
7-bit linear-feedback shift register with taps at the two most-significant bits. The
CRC covers 9 bytes for Standard-length messages and 23 bytes for Extended-length
messages. An INSTEON receiving device computes its own CRC over the same
message bytes as it receives them. If the message is corrupt, the receiver’s CRC will
not match the transmitted CRC.

Dev Guide, Chapter 5 Page 45

August 16, 2007 © 2005-2007 SmartLabs Technology

Firmware in the INSTEON Engine handles the CRC byte automatically, appending it
to messages that it sends, and comparing it within messages that it receives.
Applications post messages to and receive messages from the INSTEON Engine
without the CRC byte being appended.

Detection of message integrity allows for highly reliable, verified communications.
The INSTEON ACK/NAK (acknowledge, non-acknowledge) closed-loop messaging
protocol based on this detection method is described below (see INSTEON Message
Retrying54).

Dev Guide, Chapter 5 Page 46

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Message Summary Table
The table below summarizes all the fields in every possible type of INSTEON
message. The From Address, the To Address, the Message Flags, and the CRCs are
as explained above.

The table introduces two-letter abbreviations denoting message types that appear
often in this Developer’s Guide and in other INSTEON documentation. The first letter
is either S for Standard-length messages or E for Extended-length messages. The
second letter is D for Direct messages, A for ALL-Link Broadcast messages, C for
ALL-Link Cleanup messages, or B for Broadcast messages.

3 Bytes 3 Bytes 1 Byte 1 Byte 1 Byte 1 Byte
Message Flags Message Type From Address To Address
Type X HL MH

Cmd 1 Cmd 2 CRC3

SB [Broadcast] ID1_2 ID1_1 ID1_0 DevCat SubCat 0xFF 1 0 0 0 SB Cmd 0xFF CRC
SA Broadcast ID1_2 ID1_1 ID1_0 0x00 0x00 Group # 1 1 0 0 SA Cmd 0x00 CRC
SC Cleanup ID1_2 ID1_1 ID1_0 ID2_2 ID2_1 ID2_0 0 1 0 0 SA Cmd Group # CRC
SC Cleanup ACK ID1_2 ID1_1 ID1_0 ID2_2 ID2_1 ID2_0 0 1 1 0 SA Cmd Group # CRC
SC Cleanup NAK ID1_2 ID1_1 ID1_0 ID2_2 ID2_1 ID2_0 1 1 1 0 SA Cmd Error # CRC
SD [Direct] ID1_2 ID1_1 ID1_0 ID2_2 ID2_1 ID2_0 0 0 0 0 SD Cmd CRC
SD ACK ID1_2 ID1_1 ID1_0 ID2_2 ID2_1 ID2_0 0 0 1 0 ACK Echo or Data CRC

Standard

SD NAK ID1_2 ID1_1 ID1_0 ID2_2 ID2_1 ID2_0 1 0 1 0 NAK Error # CRC

14 Bytes 1 Byte

D1 ⇒ D14 CRC3
EB [Broadcast] Unused 1 0 0 1 Unused
EA Broadcast Unused 1 1 0 1 Unused
EC Cleanup Unused 0 1 0 1 Unused
EC Cleanup ACK Unused 0 1 1 1 Unused
EC Cleanup NAK Unused 1 1 1 1 Unused
ED [Direct] ID1_2 ID1_1 ID1_0 ID2_2 ID2_1 ID2_0 0 0 0 1 ED Cmd D1 ⇒ D14 CRC
ED ACK Unused 0 0 1 1 Unused

Extended

ED NAK Unused 1 0 1 1

M
essage retransm

issions left

M
axim

um
 m

essage retransm
issions allow

ed

Unused

B
roadcast / N

A
K

A

LL-Link
A

cknow
ledge

Extended Flag

H
ops Left, 2 bits

M
ax H

ops, 2 bits

The top section of the table shows the possible Standard-length messages and the
bottom section shows Extended-length messages. Extended-length messages have
the same structure as Standard-length messages, except that Extended-length
messages have their Extended Message Flag set to one and they possess a 14-byte
User Data field.

Although there are eight possible Extended-length message types, the only one in
actual use is ED (Extended Direct). The reason is that Acknowledgement (ACK or
NAK) messages are always Standard-length, and ALL-Link and Broadcast messages
do not require the 14-byte User Data field.

The Command 1 and Command 2 fields contain different information depending on
the INSTEON message type.

SD and ED Messages
In the case of Direct messages, the two Command fields together comprise a 2-byte
Command chosen from a possible 65,536 Commands suitable for controlling an
individual device within an INSTEON Device Category, or DevCat. Each set of 65,536
possible SD or ED Commands can have a different interpretation, depending on the
DevCat of the Responder. For example, a Direct Command of 0x11AA tells a device
belonging to DevCat 0x01 (Dimmable Lighting Controls) to turn on the lamp it

Dev Guide, Chapter 5 Page 47

August 16, 2007 © 2005-2007 SmartLabs Technology

operates to brightness level 0xAA. Every INSTEON Responder device belongs to a
DevCat and contains a database of Direct Commands specific to that DevCat that it is
capable of executing (see Chapter 8 — INSTEON Command Set114).

SD ACK and SD NAK Messages
In the interest of maximum communications reliability, the INSTEON protocol
requires that recipients of SD and ED (Direct) messages acknowledge successful
message reception by sending either an SD ACK or an SD NAK message back to the
message originator in a particular timeslot following successful reception of the
original message. Note that ACK and NAK messages are always Standard-length
(SD), even if the message being acknowledged is Extended-length (ED).

When the originator of an SD or ED message receives an SD ACK or an SD NAK, it
knows that the receiving device got the original message without corruption. If a
receiving device fails to send an SD ACK or an SD NAK back to the originating
device, the INSTEON Engine in the originating device will automatically retry sending
the message up to five times (see INSTEON Message Retrying54).

By default, when an INSTEON device receives an uncorrupted SD or ED message, its
INSTEON Engine firmware sends an SD ACK back to the originator by

7. swapping the From Address and the To Address in the message it received,

8. setting the Acknowledgement Flag (bit 5 of the Message Type field) to one,
and

9. echoing the received Command 1 and Command 2 fields.

Application-level software in a receiving device may alter the echoed bytes that the
INSTEON Engine put into the Command 1 or Command 2 fields, and it may switch
the default SD ACK message to an SD NAK message.

Certain SD Commands function as requests for just one or two bytes of data from a
receiving device. When an INSTEON device receives one of these Commands, its
application software either puts a single byte of data into the Command 2 field, or
else two bytes of data into the Command 1 and Command 2 fields of the SD ACK
message.

When certain error conditions occur after reception of an SD or ED Command, the
receiving device’s application software may change the message type to SD NAK by
setting the Broadcast/NAK (bit 7 of the Message Type field) to one. It may also put
one of the NAK Error Codes119 into the Command 2 field of the resulting SD NAK
message.

SB Messages
In the case of SB (Broadcast) messages, the Command 1 field contains one of 256
possible SB Commands suitable for sending to all devices at once. (Command 2
should be set to 0xFF.) The main purpose of SB Commands is to support ALL-
Linking of Controllers with Responders. For example, a Controller invites Responder
devices to ALL-Link to one of its buttons by sending a SET Button Pushed Controller
SB Command of 0x02 (see SET Button Pressed Broadcast Messages84). Every
INSTEON device contains a database of Broadcast Commands that it is capable of
executing.

Recipients do not acknowledge SB messages.

Dev Guide, Chapter 5 Page 48

August 16, 2007 © 2005-2007 SmartLabs Technology

SA ALL-Link Broadcast Messages
The remaining INSTEON message types are for dealing with ALL-Link Groups of one
or more devices (see INSTEON ALL-Link Groups93). INSTEON ALL-Linking26 not only
allows universal INSTEON device interoperability, but it also allows multiple INSTEON
devices to respond simultaneously to an SA ALL-Link Broadcast Command.

While it is true that all the members of an ALL-Link Group of devices could be sent
individual SD or ED (Direct) messages with the same Command (to turn on, for
example), it would take a noticeable amount of time for all the messages to be
transmitted in sequence. The members of the ALL-Link Group would not execute the
Command all at once, but rather in the order received. INSTEON solves this problem
by first sending an SA ALL-Link Broadcast message to all members of an ALL-Link
Group at once, then following it up with individual SC ALL-Link Cleanup messages
directed to each member of the ALL-Link Group in turn.

SA ALL-Link Broadcast messages contain an ALL-Link Group Number in the To
Address field, and a one-byte SA Command in the Command 1 field (Command 2
should be set to 0x00). During the SC Cleanup messages that will follow, the SA
Command will still occupy the Command 1 field but the ALL-Link Group Number will
move to the Command 2 field. Because these are both one-byte fields, there can
only be 256 SA Commands and only 256 ALL-Link Group Numbers. (There is one
legacy SA Broadcast Command, Light Start Manual Change, that uses the Command
2 field as a parameter. See INSTEON Standard-length ALL-Link Commands152 for
more information.)

Recipients of an SA ALL-Link Broadcast message check the ALL-Link Group Number
in the To Address field against their own ALL-Link Group memberships recorded in an
ALL-Link Database (see INSTEON ALL-Link Database101). This database, stored in
nonvolatile memory, is established during a prior ALL-Linking process (see Methods
for ALL-Linking INSTEON Devices96). If the recipient is a member of the ALL-Link
Group being broadcast to, it executes the Command in the Command 1 field.

Recipients do not acknowledge SA messages.

SC ALL-Link Cleanup Messages
SA ALL-Link Broadcast Command recipients can expect an individually-addressed SC
ALL-Link Cleanup message to follow. If the recipient has already executed the SA
Command, it will not execute the SA Command a second time. However, if the
recipient missed the SA ALL-Link Broadcast Command for any reason, it will not
have executed it, so it will execute the Command after receiving the SC ALL-Link
Cleanup message.

SC ACK and SC NAK Messages
After receiving the SC ALL-Link Cleanup message and executing the SA ALL-Link
Command, the recipient device will respond with an SC ACK or an SC NAK message.
The mechanism for handling SC ACK and SC NAK messages is the same as for SD
ACK and SD NAK Messages47, except that the ALL-Link Flag (bit 6 of the Message
Flags field) is set.

Dev Guide, Chapter 5 Page 49

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Message Repetition
To maximize communications reliability, the INSTEON messaging protocol includes
two kinds of message repetition: message hopping and message retrying.

INSTEON Message Hopping49 is the mechanism whereby INSTEON devices, all of
which can retransmit INSTEON messages, aid each other in delivering a message
from a message originator to a message recipient.

INSTEON Message Retrying54 occurs when the originator of an SD or ED Direct or SC
ALL-Link Cleanup message does not receive an acknowledgement message from the
intended recipient.

INSTEON Message Hopping
In order to improve reliability, the INSTEON messaging protocol includes message
retransmission, or hopping. Hopping enables other INSTEON devices, all of which
can repeat1 messages, to help relay a message from an originator to a recipient.

When INSTEON devices repeat messages, multiple devices can end up simulcasting
the same message, meaning that they can repeat the same message at the same
time. To ensure that simulcasting is synchronous (so that multiple devices do not
jam each other), INSTEON devices adhere to specific rules given below (see Timeslot
Synchronization49).

Message Hopping Control
Two 2-bit fields in the Message Flags byte manage INSTEON message hopping (see
Message Retransmission Flags43, above). One field, Max Hops, contains the
maximum number of hops, and the other, Hops Left, contains the number of hops
remaining.

To avoid ‘data storms’ of endless repetition, messages can be retransmitted a
maximum of three times only. A message originator sets the Max Hops for a
message. The larger the number of Max Hops, the longer the message will take to
complete being sent, whether or not the recipient hears the message early.

The standard value of Max Hops for SB Broadcast and SA ALL-Link Broadcast
messages is 3. For SD and ED Direct and SC ALL-Link Cleanup messages, the
standard initial value of Max Hops is 1. If INSTEON Message Retrying54 is necessary,
INSTEON Engine firmware will automatically increment Max Hops for each retry, up
to the maximum value of 3.

If the Hops Left field in a message is nonzero, every device that hears the message
synchronously repeats it, thus increasing the signal strength, path diversity, and
range of the message. An INSTEON device that repeats a message decrements Hops
Left before retransmitting it. When a device receives a message with zero Hops Left,
it does not retransmit the message.

Timeslot Synchronization
There is a specific pattern of transmissions, retransmissions and acknowledgements
that occurs when an INSTEON message is sent, as shown in the examples below.

An INSTEON message on the powerline occupies either six or thirteen zero crossing
periods, depending on whether the message is Standard- or Extended-length. This

Dev Guide, Chapter 5 Page 50

August 16, 2007 © 2005-2007 SmartLabs Technology

message transmission time, six or thirteen powerline half-cycles, is called a timeslot
in the following discussion.

During a single timeslot, an INSTEON message can be transmitted, retransmitted, or
acknowledged. The entire process of communicating an INSTEON message, which
may involve retransmissions and acknowledgements, will occur over integer
multiples of timeslots. See INSTEON Full Message Cycle Times63 below for a table
that gives these times.

The following examples show how INSTEON messages propagate in a number of
common scenarios. The examples use these symbols:

 T Transmission by Message Originator
 R Message Retransmission
 A Acknowledgement by Intended Recipient
 C Confirmation received by Message Originator
 L Listening State

Legend

 W Waiting State

 Max
Hops

Timeslot 1 2 3 4 5 6 7 8

Example 1 0 Sender T
Example 1, the simplest, shows a Broadcast message with a Max Hops of zero (no
retransmissions). The T indicates that the Sender has originated and transmitted a
single message. There is no acknowledgement that intended recipients have heard
the message. The message required one timeslot of six or thirteen powerline zero
crossings to complete.

 Max
Hops

Timeslot 1 2 3 4 5 6 7 8

Sender T Example 2 1
Repeater 1 L R

Example 2 shows a Broadcast message with a Max Hops of one. Max Hops can
range from zero to three as explained above. The Sender transmits a Broadcast
message as signified by the T. Another INSTEON device, functioning as a Repeater,
listens to the message, as signified by an L, and then retransmits it in the next
timeslot as indicated by the R.

 Max
Hops

Timeslot 1 2 3 4 5 6 7 8

Sender T L L L L
Repeater 1 L R L R L
Repeater 2 L L R L L

Example 3 3

Repeater 3 L L L R L
Up to three retransmissions are possible with a message. Example 3 shows the
progression of the message involving an originating Sender and three repeating
devices, with a Max Hops of three. Example 3 assumes that the range between
Repeaters is such that only adjacent Repeaters can hear each other, and that only

Dev Guide, Chapter 5 Page 51

August 16, 2007 © 2005-2007 SmartLabs Technology

Repeater 1 can hear the Sender. Note that the Sender will not retransmit its own
message.

 Max
Hops

Timeslot 1 2 3 4 5 6 7 8

Sender T C Example 4 0
Recipient L A

When a Sender transmits a Direct message, it expects an acknowledgement from the
Recipient. Example 4 shows what happens if the Max Hops value is zero. The A
designates the timeslot in which the Recipient acknowledges receipt of the Direct
message. The C shows the timeslot when the Sender finds that the message is
confirmed.

 Max
Hops

Timeslot 1 2 3 4 5 6 7 8

Sender T L L C
Repeater 1 L R L R Example 5 1
Recipient L L A L

When Max Hops is set to one, a Direct message propagates as shown in Example 5.
Repeater 1 will retransmit both the original Direct message and the
acknowledgement from the Recipient.

 Max
Hops

Timeslot 1 2 3 4 5 6 7 8

Sender T L C W
Repeater 1 L R L R Example 6 1
Recipient L W A L

If Max Hops is set to one, but no retransmission is needed because the Recipient is
within range of the Sender, messages flow as shown in Example 6. The W in the
Sender and Recipient rows indicates a wait. The Recipient immediately hears the
Sender since it is within range. However, the Recipient must wait one timeslot
before sending its acknowledgement, because it is possible that a repeating device
will be retransmitting the Sender’s message. Repeater 1 is shown doing just that in
the example, although the Recipient would still have to wait even if no Repeaters
were present. Only when all of the possible retransmissions of the Sender’s message
are complete, can the Recipient send its acknowledgement. Being within range, the
Sender hears the acknowledgement immediately, but it must also wait until possible
retransmissions of the acknowledgement are finished before it can send another
message.

Dev Guide, Chapter 5 Page 52

August 16, 2007 © 2005-2007 SmartLabs Technology

 Max
Hops

Timeslot 1 2 3 4 5 6 7 8

Sender T L L L L L L C
Repeater 1 L R L R L R L R
Repeater 2 L L R L L L R L
Repeater 3 L L L R L R L R

Example 7 3

Recipient L L L L A L R L
Example 7 shows what happens when Max Hops is three and three retransmissions
are in fact needed for the message to reach the Recipient. Note that if the Sender or
Recipient were to hear the other’s message earlier than shown, it still must wait until
Max Hops timeslots have occurred after the message was originated before being
free to send its own message. If devices did not wait, they would jam each other by
sending different messages in the same timeslot. A device can calculate how many
timeslots have passed prior to receiving a message by subtracting the Hops Left
number in the received message from the Max Hops number.

Dev Guide, Chapter 5 Page 53

August 16, 2007 © 2005-2007 SmartLabs Technology

All seven of the above examples are given again in the table below in order to show
the patterns more clearly.

 Max
Hops

Timeslot 1 2 3 4 5 6 7 8

Example 1 0 Sender T

Sender T Example 2 1
Repeater 1 L R

Sender T L L L L
Repeater 1 L R L R L
Repeater 2 L L R L L

Example 3 3

Repeater 3 L L L R L

Sender T C Example 4 0
Recipient L A

Sender T L L C
Repeater 1 L R L R Example 5 1
Recipient L L A L

Sender T L C W
Repeater 1 L R L R Example 6 1
Recipient L W A L

Sender T L L L L L L C
Repeater 1 L R L R L R L R
Repeater 2 L L R L L L R L
Repeater 3 L L L R L R L R

Example 7 3

Recipient L L L L A L R L

 T Transmission by Message Originator
 R Message Retransmission
 A Acknowledgement by Intended Recipient
 C Confirmation received by Message Originator
 L Listening State

Legend

 W Waiting State

Dev Guide, Chapter 5 Page 54

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Message Retrying
If the originator of an INSTEON Direct message does not receive an
acknowledgement from the intended recipient, the message originator will
automatically try resending the message up to five times.

Firmware in the INSTEON Engine handles message retrying. In case a message did
not get through because Max Hops was set too low, each time the INSTEON Engine
retries a message, it also increases Max Hops up to the limit of three. A larger
number of Max Hops can achieve greater range for the message by allowing more
devices to retransmit it.

The tables below give the time in seconds to retry messages five times, taking into
account the starting Max Hops value.

Time for Five Direct (Acknowledged)
Message Retries, Seconds

Beginning
Max Hops

Standard-length
Messages

Extended-length
Messages

0 1.40 2.22

1 1.70 2.69

2 1.90 3.01

3 2.00 3.17

When an application uses the INSTEON Engine to send a Direct message to an
intended recipient, it can conclude that the recipient did not get the message after
five retries if the INSTEON Engine does not return the expected acknowledgement
message within the pertinent time limit given in the table. In other words, when an
application sends an SD or ED Direct or SC ALL-Link Cleanup message, it should set
a timer with the appropriate value from the table. If the timer expires before the
application receives the acknowledgement, then the message did not get through.

Because message retrying is automatic, it is important to unlink INSTEON Responder
devices from INSTEON Controller devices when an ALL-Linked device is removed
from an INSTEON network. Otherwise, the Controller will needlessly retry
communicating with the missing Responder. See the INSTEON ALL-Link Database101
section, below, for more information.

i2 Engine Message Retrying
The i2 INSTEON Engine improves retries in two ways.

First, if the i2 Engine sends an SB or SA Broadcast message with Max Hops greater
than zero, and then does not hear another INSTEON device hopping the message,
then it will begin a retry sequence until it does hear a hop or until it has retried five
times.

Second, the i2 Engine waits for a randomized number of powerline zero crossing
times before it retries sending a message. Both i1 and i2 INSTEON Engines wait for
any existing INSTEON traffic to complete before sending an INSTEON message.
However, it is still possible that two or more INSTEON devices may attempt to send
their messages at the same time after the channel is free. When this happens, the
messages will ‘clobber’ each other and receivers will detect a corrupted message. In

Dev Guide, Chapter 5 Page 55

August 16, 2007 © 2005-2007 SmartLabs Technology

the case of Direct (SD, ED, or SC) messages, receivers will not send an
acknowledgement message, and in the case of Broadcast (SB or SA) messages,
other devices will not hop the message. In either case, the senders will begin a retry
sequence. With the randomized retry delay, each sender will begin the retry at a
different time with high probability. Whichever device starts first will gain the
channel. The other devices will abort their retry attempts and signal the retry failure
by setting the _MsgFail flag (bit 4) in the I_Error byte (see the i2 Engine Memory
Map170).

Dev Guide, Chapter 6 Page 56

August 16, 2007 © 2005-2007 SmartLabs Technology

Chapter 6 — INSTEON Signaling Details

This chapter gives complete information about how the data in INSTEON messages
actually travels over the powerline or the airwaves. Unlike other mesh networks,
INSTEON does not elaborately route its traffic in order to avoid data collisions—
instead, INSTEON devices simulcast according to simple rules explained below.
Simulcasting by multiple devices is made possible because INSTEON references a
global clock, the powerline zero crossing.

In This Chapter

INSTEON Powerline Signaling57
Covers bit encoding for powerline transmission, packetizing of INSTEON
messages, packet timing, X10 compatibility2, message timeslots, and powerline
data rates.

INSTEON Second Generation i2/RF Signaling65
Describes RF signaling for all INSTEON products except the SmartLabs
SignaLinc™ RF Signal Enhancer.

INSTEON First Generation i1/RF Signaling78
Describes RF signaling for the SmartLabs SignaLinc™ RF Signal Enhancer. All
other INSTEON products use INSTEON RF Signaling.

INSTEON Simulcasting80
Explains how allowing multiple INSTEON devices to talk at the same time makes
an INSTEON network more reliable as more devices are added, and eliminates
the need for complex, costly message routing.

Dev Guide, Chapter 6 Page 57

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Powerline Signaling
This section covers low-level INSTEON messaging over the powerline.

In This Section

Powerline BPSK Modulation58
Shows how bits are modulated onto the powerline.

INSTEON Powerline Packets59
Shows the format of INSTEON packets associated with the powerline zero
crossing.

Powerline Packet Timing60
Gives the timing details for INSTEON powerline packets and X10 signals.

X10 Compatibility61
Explains how INSTEON coexists with X10 on the powerline.

Powerline Message Timeslots62
Explains how INSTEON packets are grouped into INSTEON messages on the
powerline.

INSTEON Full Message Cycle Times63
Gives the time required to send INSTEON messages over the powerline.

INSTEON Powerline Data Rates64
Calculates the net bits-per-second data rates for INSTEON messages on the
powerline.

Dev Guide, Chapter 6 Page 58

August 16, 2007 © 2005-2007 SmartLabs Technology

Powerline BPSK Modulation
INSTEON devices communicate on the powerline by adding a signal to the powerline
voltage. In the United States, powerline voltage is nominally 110 VAC RMS,
alternating at 60 Hz.

An INSTEON powerline signal uses a carrier frequency of 131.65 KHz, with a nominal
amplitude of 4.64 volts peak-to-peak into a 5 ohm load. In practice, the impedance
of powerlines varies widely, depending on the powerline configuration and what is
plugged into it, so measured INSTEON powerline signals can vary from sub-millivolt
to more than 5 volts.

INSTEON data is modulated onto the 131.65 KHz carrier using binary phase-shift
keying, or BPSK, chosen for reliable performance in the presence of noise.

The figure below shows an INSTEON 131.65 KHz powerline carrier signal with
alternating binary phase-shift keying (BPSK) bit modulation.

INSTEON uses 10 cycles of carrier for each bit. Bit 1, interpreted as a one, begins
with a positive-going carrier cycle. Bit 2, interpreted as a zero, begins with a
negative-going carrier cycle. Bit 3 begins with a positive-going carrier cycle, so it is
interpreted as a one. Note that the sense of the bit interpretations is arbitrary. That
is, ones and zeros could be reversed as long as the interpretation is consistent.
Phase transitions only occur when a bitstream changes from a zero to a one or from
a one to a zero. A one followed by another one, or a zero followed by another zero,
will not cause a phase transition. This type of coding is known as NRZ, or non-return
to zero.

Note the abrupt phase transitions of 180 degrees at the bit boundaries. Abrupt
phase transitions introduce troublesome high-frequency components into the signal’s
spectrum. Phase-locked detectors can have trouble tracking such a signal. To solve
this problem, INSTEON uses a gradual phase change to reduce the unwanted
frequency components.

The figure above shows the same BPSK signal with gradual phase shifting. The
transmitter introduces the phase change by inserting 1.5 cycles of carrier at 1.5
times the 131.65 KHz frequency. Thus, in the time taken by one cycle of 131.65
KHz, three half-cycles of carrier will have occurred, so the phase of the carrier will be
reversed at the end of the period due to the odd number of half-cycles. Note the
smooth transitions between the bits.

Bit 1
1

Bit 2
0

Bit 3
1

Bit 1
1

Bit 2
0

Bit 3
1

Dev Guide, Chapter 6 Page 59

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Powerline Packets
Messages sent over the powerline are broken up into packets, with each packet sent
in conjunction with a zero crossing of the AC voltage on the powerline.

The bytes in an INSTEON powerline message are transmitted most-significant byte
first, and the bits are transmitted most-significant bit first.

Standard-length messages use five packets and Extended-length messages use
eleven packets, as shown below.

120 total bits = 15 bytes Standard-length Message – 5 Packets
 84 Data bits = 10½ bytes, 10 usable

SP BP BP BP BP

264 total bits = 33 bytes Extended-length Message - 11 Packets
192 Data bits = 24 bytes

SP BP BP BP BP BP BP BP BP BP BP

A Start Packet appears as the first packet in an INSTEON message, as shown by the
symbol SP in both the Standard- and Extended-length messages. The remaining
packets in a message are Body Packets, as shown by the symbols BP.

Each packet contains 24 bits of information, but the information is interpreted in two
different ways, as shown below.

SP Start Packet

1 0 1 0 1 0 1 0 1 0 0 1 x x x x x x x x x x x x

8 Sync bits
4 Start Code

bits
12 Data bits

BP Body Packet

1 0 1 0 0 1 x x x x x x x x x x x x x x x x x x

2 Sync
bits

4 Start Code
bits

18 Data Bits

Powerline packets begin with a series of Sync Bits. There are eight Sync Bits in a
Start Packet and there are two Sync Bits in a Body Packet. The alternating pattern
of ones and zeros allows the receiver to detect the presence of a signal.

Following the Sync Bits are four Start Code Bits. The 1001 pattern indicates to the
receiver that Data bits will follow.

Dev Guide, Chapter 6 Page 60

August 16, 2007 © 2005-2007 SmartLabs Technology

The remaining bits in a packet are Data Bits. There are twelve Data Bits in a Start
Packet, and there are eighteen Data Bits in a Body Packet.

The total number of Data Bits in a Standard-length message is 84, or 10½ bytes.
The last four data bits in a Standard-length message are ignored, so the usable data
is 10 bytes. The total number of Data Bits in an Extended-length message is 192, or
24 bytes.

Powerline Packet Timing
All INSTEON powerline packets contain 24 bits. Since a bit takes 10 cycles of 131.65
KHz carrier, there are 240 cycles of carrier in an INSTEON packet. An INSTEON
powerline packet therefore lasts 1.823 milliseconds.

The powerline environment is notorious for uncontrolled noise, especially high-
amplitude spikes caused by motors, dimmers and compact fluorescent lighting. This
noise is minimal during the time that the current on the powerline reverses direction,
a time known as the powerline zero crossing. Therefore, INSTEON packets are
transmitted during the zero crossing quiet time, as shown in the figure below.

The top of the figure shows a single powerline cycle, which possesses two zero
crossings. An INSTEON packet is shown at each zero crossing. INSTEON packets
nominally begin 876 microseconds before a zero crossing and last until 947
microseconds after the zero crossing. To allow for hardware zero crossing detector
component tolerances and for load-dependent powerline phase shifts, the INSTEON
signal may begin up to 300 microseconds early or late with respect to the zero
crossing detected by a particular INSTEON device.

X10

INSTEON

X10

INSTEON

24 Bits @ 13.165 Kbps

1 BIT = 10 Cycles of 131.65 KHz

Zero Crossing 16.67 ms

876 µs
947 µs

1823 µs

INSTEON
X10

1 BURST = ½ BIT = 120 Cycles of 120 KHz

Zero Crossing

Dev Guide, Chapter 6 Page 61

August 16, 2007 © 2005-2007 SmartLabs Technology

X10 Compatibility
The figure also shows how X10 signals are applied to the powerline. X10 is the
signaling method used by many devices already deployed on powerlines around the
world. Compatibility2 with this existing population of legacy X10 devices is an
important feature of INSTEON. At a minimum, X10 compatibility means that
INSTEON and X10 signals can coexist with each other, but compatibility also allows
designers to create hybrid devices that can send and receive both INSTEON and X10
signals.

The X10 signal uses a burst of approximately 120 cycles of 120 KHz carrier
beginning at the powerline zero crossing and lasting about 1000 microseconds. A
burst followed by no burst signifies an X10 one bit and no burst followed by a burst
signifies an X10 zero bit. An X10 message begins with two bursts in a row followed
by a one bit, followed by nine data bits. The figure shows an X10 burst at each of
the two zero crossings.

The X10 specification also allows for two copies of the zero crossing burst located
one-third and two-thirds of the way through a half-cycle of power. These points
correspond to the zero crossings of the other two phases of three-phase power.
INSTEON is insensitive to those additional X10 bursts and does not transmit them
when sending X10.

The middle of the figure shows an expanded view of an INSTEON packet with an X10
burst superimposed. The X10 signal begins at the zero crossing, 876 microseconds
after the beginning of the INSTEON packet, and ends 1000 microseconds after the
zero crossing.

INSTEON devices achieve compatibility with X10 by listening for an INSTEON signal
beginning 876 microseconds before the zero crossing. INSTEON receivers
implemented in software can be very sensitive, but at the cost of having to receive a
substantial portion of a packet before being able to validate that a true INSTEON
packet is being received. Reliable validation may not occur until as much as 450
microseconds after the zero crossing, although an INSTEON device will still begin
listening for a possible X10 burst right at the zero crossing. If at the 450-
microsecond mark the INSTEON receiver validates that it is not receiving an
INSTEON packet, but that there is an X10 burst present, the INSTEON receiver will
switch to X10 mode and listen for a complete X10 message over the next 11
powerline cycles. If instead the INSTEON device detects that it is receiving an
INSTEON packet, it will remain in INSTEON mode and not listen for X10 until it
receives the rest of the complete INSTEON message.

The bottom of the figure shows that the raw bitrate for INSTEON is much faster for
INSTEON than for X10. An INSTEON bit requires ten cycles of 131.65 KHz carrier, or
75.96 microseconds, whereas an X10 bit requires two 120-cycle bursts of 120 KHz.
One X10 burst takes 1000 microseconds, but since each X10 burst is sent at a zero
crossing, it takes 16,667 microseconds to send the two bursts in a bit, resulting in a
sustained bitrate of 60 bits per second. INSTEON packets consist of 24 bits, and an
INSTEON packet can be sent during each zero crossing, so the nominal raw
sustained bitrate for INSTEON is 2880 bits per second, 48 times faster than X10.
Note that this nominal INSTEON bitrate must be derated to account for packet and
message overhead, as well as message retransmissions. See INSTEON Full Message
Cycle Times63, below, for details.

Dev Guide, Chapter 6 Page 62

August 16, 2007 © 2005-2007 SmartLabs Technology

Powerline Message Timeslots
To allow time for processing messages and potential retransmission of a message by
INSTEON i1/RF devices, an INSTEON transmitter waits for one additional zero
crossing after sending a Standard-length message, or for two zero crossings after
sending an Extended-length message. Therefore, the total number of zero crossings
needed to send a Standard-length message is 6, or 13 for an Extended-length
message. This number, 6 or 13, constitutes an INSTEON message timeslot.

Standard-length Message Timeslots
The figure below shows a series of 5-packet Standard-length INSTEON messages
being sent on the powerline. INSTEON transmitters wait for one zero crossing after
each Standard-length message before sending another message, so the Standard-
length message timeslot is 6 zero crossings, or 50 milliseconds, in length.

Extended-length Message Timeslots
The next figure shows a series of 11-packet Extended-length INSTEON messages
being sent on the powerline. INSTEON transmitters wait for two zero crossings after
each Extended-length message before sending another message, so the Extended-

length message timeslot is 13 zero crossings, or 108.333 milliseconds, in length.

Extended Message
Timeslot 2

Extended Message
Timeslot 1

Standard Message
Timeslot 1

Standard Message
Timeslot 2

Standard Message
Timeslot 3

Standard Message
Timeslot 4

Dev Guide, Chapter 6 Page 63

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Full Message Cycle Times
An INSTEON full message cycle encompasses all of the Powerline Message
Timeslots62 required for hopping the outgoing INSTEON message and receiving
acknowledgement messages, if any. Responders return acknowledgement messages
with the same number of hops as the outgoing message.

SD and ED Direct and SC ALL-Link Cleanup messages require acknowledgement, but
SB Broadcast and SA ALL-Link Broadcast messages do not. All acknowledgement
messages are Standard-length, even if the outgoing message is Extended-length.

The table below gives the overall time required to complete a full message cycle,
depending on whether the message is Standard- or Extended-length, on the value of
the Max Hops field within the Message Flags41 byte, and on whether or not there is
an acknowledgement message. See INSTEON Message Hopping49 above for
examples of messages propagating in timeslots.

INSTEON Full Message Cycle Times

Message
Length

Max
Hops

ACK? Timeslots
S = Standard
E = Extended

Powerline
Zero
Crossings

Time
(ms)

Standard 0 No 1 S 6 50

Standard 1 No 2 S 12 100

Standard 2 No 3 S 18 150

Standard 3 No 4 S 24 200

Standard 0 Yes 2 S 12 100

Standard 1 Yes 4 S 24 200

Standard 2 Yes 6 S 36 300

Standard 3 Yes 8 S 48 400

Extended 0 No 1 E 13 108.333

Extended 1 No 2 E 26 216.667

Extended 2 No 3 E 39 325

Extended 3 No 4 E 52 433.333

Extended 0 Yes 1 E + 1 S 19 158.333

Extended 1 Yes 2 E + 2 S 38 316.667

Extended 2 Yes 3 E + 3 S 57 475

Extended 3 Yes 4 E + 4 S 76 633.333

Dev Guide, Chapter 6 Page 64

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Powerline Data Rates
INSTEON Standard-length messages contain 120 raw data bits and require 6 zero
crossings, or 50 milliseconds to send. Extended-length messages contain 264 raw
data bits and require 13 zero crossings, or 108.33 milliseconds to send. Therefore,
the actual raw bitrate for INSTEON is 2400 bits per second for Standard-length
messages, or 2437 bits per second for Extended-length messages, instead of the
2880 bits per second it would be without waiting for the extra zero crossings.

INSTEON Standard-length messages contain 9 bytes (72 bits) of usable data, not
counting packet sync and start code bits, nor the message CRC byte. Extended-
length messages contain 23 bytes (184 bits) of usable data using the same criteria.
Therefore, the bitrates for usable data are further reduced to 1440 bits per second
for Standard-length messages and 1698 bits per second for Extended-length
messages. If one only counts the 14 bytes (112 bits) of User Data in Extended-
length messages, the User Data bitrate is 1034 bits per second.

The above data rates assume that messages are sent with Max Hops set to zero and
that there are no message retries. They also do not take into account the time it
takes for a message to be acknowledged. The table below shows net data rates
when multiple hops and message acknowledgement are taken into account. To
account for retries, divide the given data rates by one plus the number of retries (up
to a maximum of 5 possible retries).

Condition Bits per Second

Max
Hops ACK Retries

Standard
Message
Usable
Data

Extended
Message
Usable
Data

Extended
Message

User Data
Only

0 No 0 1440 1698 1034

1 No 0 720 849 517

2 No 0 480 566 345

3 No 0 360 425 259

0 Yes 0 720 849 517

1 Yes 0 360 425 259

2 Yes 0 240 283 173

3 Yes 0 180 213 130

Dev Guide, Chapter 6 Page 65

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Second Generation i2/RF
Signaling

Second generation i2/RF replaces first generation i1/RF for wireless INSTEON
communications. Because i2/RF and i1/RF use different frequencies, they operate
independently. (There is only one legacy product that implemented i1/RF, the
SignaLinc™ RF Signal Enhancer introduced in May 2005.)

i2/RF Physical Layer
The table below gives the specifications for second generation INSTEON i2/RF
physical radios.

i2/RF Specification Value

Center Frequency 915.0000 MHz

Modulation Method FSK

FSK Deviation 200 KHz peak-to-peak

Data Encoding Method Manchester

Symbol Rate 9124 symbols per second

Data Rate 4562 bits per second

Symbol Time 109.600 microseconds

Bit Time 219.200 microseconds

Range 400 ft unobstructed line-of-sight,
half-wave dipole antenna, 0.1 raw
bit-error rate

i2/RF Center Frequency
The center frequency, 915.0000 MHz, lies in the band 902 to 924 MHz, which is
permitted for unlicensed operation in the United States. i2/RF radios cannot
communicate with i1/RF radios because they operate at different frequencies.

i2/RF Modulation
Symbols are modulated onto the carrier using frequency-shift keying (FSK), where a
zero-symbol modulates the carrier half the FSK deviation frequency downward and a
one-symbol modulates the carrier half the FSK deviation frequency upward. The FSK
deviation frequency chosen for i2/RF is 200 KHz.

i2/RF Data Encoding
Each data bit is Manchester encoded, meaning that two symbols are sent for each
bit. A one-symbol followed by a zero-symbol designates a One-Bit, and a zero-
symbol followed by a one-symbol designates a Zero-Bit.

The two illegal Manchester codes play special roles. Two zero-symbols in a row
designate a Start-Bit, and two one-symbols in a row designate a Sync-Bit. i2/RF
transmitters begin packets with Start-Bits, but they never send Sync-Bits. i2/RF
receivers, however, can use Sync-Bit detection in a symbol stream to adjust the
phase of their bit clocks.

The table below shows the four possible symbol combinations.

Dev Guide, Chapter 6 Page 66

August 16, 2007 © 2005-2007 SmartLabs Technology

Symbols Bit Name Usage

00 S Start-Bit Designates beginning of i2/RF Packet

01 0 Zero-Bit Data bit of 0

10 1 One-Bit Data bit of 1

11 — Sync-Bit Never transmitted, receivers can use to sync bit clock

i2/RF Timing
Symbols are modulated onto the carrier at 9,124 symbols per second, resulting in a
raw data rata of half that, or 4,562 bits per second.

The master symbol clock derives from counting 274 ticks of a 400-nanosecond timer,
giving a symbol period of 109.600 microseconds, or a bit period of 219.200
microseconds.

i2/RF Range
The typical range for free-space reception is 400 feet to achieve a raw bit-error rate
of 0.1% using a half-wave dipole antenna. The presence of walls and other RF
energy absorbers will reduce this range.

Dev Guide, Chapter 6 Page 67

August 16, 2007 © 2005-2007 SmartLabs Technology

i2/RF Data Packets
Each byte in an i2/RF message is transported in a separate i2/RF Data Packet.
Accordingly, a Standard-length message requires 10 i2/RF Data Packets and an
Extended-length message requires 24 i2/RF Data Packets.

i2/RF Data Packets always begin with a Start-Bit, which is an illegal Manchester code
consisting of two zero symbols in a row. Thirteen Manchester-encoded One-Bits or
Zero-Bits follow the Start-Bit. The first five bits constitute a Sleep Code, and the last
eight bits make up the INSTEON message i2/RF Data Byte.

Counting the Start-Bit, there are 140 bits (280 symbols) in the 10 i2/RF Data
Packets of a Standard-length message, and 336 bits (672 symbols) in the 24 i2/RF
Data Packets of an Extended-length message. This bitstream for the entire message
is transmitted continuously—there is no space between packets.

Both the Sleep Code and the i2/RF Data Byte are transmitted least-significant bit
(LSB) first.

The table below shows the contents of an i2/RF Data Packet.

i2/RF Data Packet Structure

Bit # Bit Symbols Field

1 S 00 Start-Bit

2 0 or 1 01 or 10 Bit 0 (LSB)

3 0 or 1 01 or 10 Bit 1

4 0 or 1 01 or 10 Bit 2

5 0 or 1 01 or 10 Bit 3

6 0 or 1 01 or 10

Sleep Code

Bit 4 (MSB)

7 0 or 1 01 or 10 Bit 0 (LSB)

8 0 or 1 01 or 10 Bit 1

9 0 or 1 01 or 10 Bit 2

10 0 or 1 01 or 10 Bit 3

11 0 or 1 01 or 10 Bit 4

12 0 or 1 01 or 10 Bit 5

13 0 or 1 01 or 10 Bit 6

14 0 or 1 01 or 10

i2/RF Data
Byte

Bit 7 (MSB)

At a bitrate of 4,562 bits per second (219.200 microseconds per bit), it takes 3.0688
milliseconds to send a 14-bit i2/RF Data Packet.

Dev Guide, Chapter 6 Page 68

August 16, 2007 © 2005-2007 SmartLabs Technology

i2/RF Sync Pattern
A Sync Pattern is a nibble of 0x5, or 0101 in binary. As with the other fields in an
i2/RF packet, the Sync Pattern is also sent LSB first, so it looks like this:

i2/RF Sync Pattern

Bit # Bit Symbols

1 1 10

2 0 01

3 1 10

4 0 01

A full byte (two nibbles) of Sync Pattern precedes the first packet in an i2/RF
message. Its main function is to synchronize the decoder’s bit clock so that the
Start-Bit immediately following the Sync Pattern can be properly detected

The Sync Pattern also fills in the gaps between the end of the first transmission of an
i2/RF message and any hops of the same message that the originating transmitter
may send. The Sync Pattern is contained in a number of Sync Filler Packets followed
by a special Sync Gap Packet.

Standard-length messages will have three Sync Filler Packets and Extended-length
messages will have six. Sync Filler Packets are similar to i2/RF Data Packets except
that the data byte consists of two nibbles of Sync Pattern, like this:

i2/RF Sync Filler Packet Structure

Bit # Bit Symbols Field

1 S 00 Start-Bit

2 0 01 Bit 0 (LSB)

3 0 01 Bit 1

4 0 or 1 01 or 10 Bit 2

5 0 or 1 01 or 10 Bit 3

6 0 or 1 01 or 10

Sleep Code
1 through 6

Bit 4 (MSB)

7 1 10 Bit 0 (LSB)

8 0 01 Bit 1

9 1 10 Bit 2

10 0 01 Bit 3 (MSB)

11 1 10 Bit 0 (LSB

12 0 01 Bit 1

13 1 10 Bit 2

14 0 01

Sync
Pattern

Bit 3 (MSB)

The Sync Gap Packet that comes after the Sync Filler Packets has a Sleep Code of 0
followed by 15 nibbles of Sync Pattern. Sync Gap Packets look like this:

Dev Guide, Chapter 6 Page 69

August 16, 2007 © 2005-2007 SmartLabs Technology

i2/RF Sync Gap Packet Structure

Bit # Bit Symbols Field

1 S 00 Start-Bit

2 0 01 Bit 0 (LSB)

3 0 01 Bit 1

4 0 01 Bit 2

5 0 01 Bit 3

6 0 01

Sleep Code
0

Bit 4 (MSB)

7 1 10 Bit 0 (LSB)

8 0 01 Bit 1

9 1 10 Bit 2

10 0 01 Bit 3 (MSB)

.

.

.

.

.

.

 .
.
.

63 1 10 Bit 0 (LSB

64 0 01 Bit 1

65 1 10 Bit 2

66 0 01

Sync
Pattern

Bit 3 (MSB)

Dev Guide, Chapter 6 Page 70

August 16, 2007 © 2005-2007 SmartLabs Technology

i2/RF Sleep Codes
Battery powered INSTEON i2/RF devices must conserve as much energy as possible
in order to prolong battery life. The 5-bit Sleep Code at the beginning of each i2/RF
packet allows i2/RF devices to rapidly determine where the packet lies in a message
sequence so that they can power down and wake up again during the Sync Pattern
preceding the next message timeslot.

When an i2/RF device receives a Start-Bit, the Sleep Code follows immediately. If
the Sleep Code is 31 (0x1F), then the packet is an i2/RF Data Packet containing the
INSTEON Message Flags41. If the Sleep Code is 0 (0x00), then the packet is a Sync
Gap Packet containing 15 nibbles of Sync Pattern. Any other Sleep Code value (1
through 30) tells the receiver that it is in the middle of an i2/RF message and that it
is too late to parse that repetition of the message.

A receiver that decodes a Sleep Code from 1 through 30 can calculate the maximum
time that it can go to sleep before waking up in time to receive either a
retransmission of the message it is currently in the middle of or else a new message.
The calculation is simple—multiply the Sleep Code value by the i2/RF packet duration
of 3.0688 milliseconds and then add 14 milliseconds. The result is the time that will
elapse between receiving the last bit of the Sleep Code and the first bit of the Sync
Pattern nibble that precedes the next message timeslot.

Max Sleep Time = (Sleep Code X 3.0688) + 14.0000 milliseconds

Designers should deduct from these maximum sleep times any additional processing
time before going to sleep plus any additional time it will take to wake up and begin
reliably detecting a Sync Pattern. To wake up two Sync Pattern nibbles before the
next message timeslot, deduct another 0.8768 milliseconds (four 219.2 microsecond
bit times).

Note that when waking up after the calculated sleep time, there may not be an i2/RF
message occupying the following timeslot. This will happen when the receiver parses
a Sleep Code from the last repetition of a message and no transmitter begins
sending a message in the next timeslot. See i2/RF Wakeup Strategies75 below for
various actions to take in this case.

The table below summarizes the above information.

Dev Guide, Chapter 6 Page 71

August 16, 2007 © 2005-2007 SmartLabs Technology

i2/RF Sleep Codes

Sleep Code Meaning Sleep Time
Until Next
Message Sync

31 (0x1F) First i2/RF Packet designator.
This packet contains the
Message Flags byte.

Don’t sleep right
away; parse
first.

30 (0x1E) 30 X 3.0688 = 92.0640 ms 106.0640 ms

29 (0x1D) 29 X 3.0688 = 88.9952 ms 102.9952 ms

28 (0x1C) 28 X 3.0688 = 85.9264 ms 99.9264 ms

27 (0x1B) 27 X 3.0688 = 82.8576 ms 96.8576 ms

26 (0x1A) 26 X 3.0688 = 79.7888 ms 93.7888 ms

25 (0x19) 25 X 3.0688 = 76.7200 ms 90.7200 ms

24 (0x18) 24 X 3.0688 = 73.6512 ms 87.6512 ms

23 (0x17) 23 X 3.0688 = 70.5824 ms 84.5824 ms

22 (0x16) 22 X 3.0688 = 67.5136 ms 81.5136 ms

21 (0x15) 21 X 3.0688 = 64.4448 ms 78.4448 ms

20 (0x14) 20 X 3.0688 = 61.3760 ms 75.3760 ms

19 (0x13) 19 X 3.0688 = 58.3072 ms 72.3072 ms

18 (0x12) 18 X 3.0688 = 55.2384 ms 69.2384 ms

17 (0x11) 17 X 3.0688 = 52.1696 ms 66.1696 ms

16 (0x10) 16 X 3.0688 = 49.1008 ms 63.1008 ms

15 (0x0F) 15 X 3.0688 = 46.0320 ms 60.0320 ms

14 (0x0E) 14 X 3.0688 = 42.9632 ms 56.9632 ms

13 (0x0D) 13 X 3.0688 = 39.8944 ms 53.8944 ms

12 (0x0C) 12 X 3.0688 = 36.8256 ms 50.8256 ms

11 (0x0B) 11 X 3.0688 = 33.7568 ms 47.7568 ms

10 (0x0A) 10 X 3.0688 = 30.6880 ms 44.6880 ms

9 (0x09) 9 X 3.0688 = 27.6192 ms 41.6192 ms

8 (0x08) 8 X 3.0688 = 24.5504 ms 38.5504 ms

7 (0x07) 7 X 3.0688 = 21.4816 ms 34.4816 ms

6 (0x06) 6 X 3.0688 = 18.4128 ms 31.4128 ms

5 (0x05) 5 X 3.0688 = 15.3440 ms 29.3440 ms

4 (0x04) 4 X 3.0688 = 12.2752 ms 26.2752 ms

3 (0x03) 3 X 3.0688 = 9.2064 ms 23.2064 ms

2 (0x02) 2 X 3.0688 = 6.1376 ms 20.1376 ms

1 (0x01) 1 X 3.0688 = 3.0688 ms 17.0688 ms

0 (0x00) Sync Gap Packet designator.
A continuous Sync Pattern
follows this Sleep Code until
the start of the next message
hop

A new message
timeslot will
follow.

Dev Guide, Chapter 6 Page 72

August 16, 2007 © 2005-2007 SmartLabs Technology

i2/RF Messages
INSTEON i2/RF messages contain the same information as INSTEON powerline
messages, but with the data reordered so that a battery-powered device can quickly
determine whether or not it is the addressee of an incoming message, and if it is not,
go back to sleep.

i2/RF Message Timing
i2/RF messages occupy timeslots that are very close in duration to the Powerline
Message Timeslots62 specified above. Each Standard-length i2/RF message occupies
a 49.9776 ms timeslot corresponding to 6 powerline zero crossing intervals (50.0000
ms), and each Extended-length i2/RF message occupies a 108.2848 ms timeslot
corresponding to 13 powerline zero crossing intervals (108.3333 ms).

The actual time to transmit an i2/RF message is shorter than the message interval,
in order to allow time for the message receiver to process the message. Accordingly,
an i2/RF message interval time consists of the i2/RF message duration time plus an
i2/RF message gap time.

The following table summarizes this information. All times are in milliseconds.

i2/RF Message Timing

Message Property Standard-length
Messages

Extended-length
Messages

Powerline Zero Crossings 6 13

Powerline Message Interval Time 50.0000 108.3333

i2/RF Message Interval Time 49.9776 108.2848

i2/RF Message Duration Time 30.6880 73.6512

i2/RF Message Gap Time 19.2896 34.6336

i2/RF Message Retransmission
i2/RF messages are subject to the same INSTEON Message Hopping49 rules as
powerline messages. The section INSTEON Full Message Cycle Times63 above gives a
table showing how long a full message cycle takes, depending on the message
length, how many times the message originator specified for the message to hop,
and whether the message is acknowledged or not.

On the powerline, message originators only transmit a message once no matter how
many times the message will be hopped (although if they hear their own message
hopped by another INSTEON device and there are still some more hops remaining to
be done, then they will hop the message as any other device would). In contrast,
i2/RF message originators do “hop their own messages” by transmitting the same
message more than once, depending on the Max Hops field in the message. Of
course, they decrement the Hops Left field each time they retransmit the message.

i2/RF message originators always set the Max Hops field in a message to a minimum
of one so that the message will be retransmitted (hopped) at least once. Thus,
receivers that may wake up in the middle of the first transmission will have at least
one more chance to receive the complete message.

Dev Guide, Chapter 6 Page 73

August 16, 2007 © 2005-2007 SmartLabs Technology

i2/RF Message Structure
All i2/RF messages begin with two nibbles of Sync Pattern (0x55), followed by one
i2/RF packet for each byte in the message. If a message originator is going to
retransmit a message due to remaining hops, then it will fill the space between the
two messages with a number of Sync Filler Packets followed by a special Sync Gap
Packet containing a long Sync Pattern. The Sync Pattern in the Sync Gap Packet
then serves as the lead-in to the next repetition of the message in lieu of the two
nibbles of Sync Pattern that normally precede the first repetition of a message in a
message cycle.

The table below shows all of the packets in both a Standard-length and an Extended-
length i2/RF message. Note that the table does not show the Sleep Pattern byte
preceding the first message in a message cycle.

Standard-length Message Extended-length Message

Sleep Code Broadcast
Message
Byte

Direct
Message
Byte

Sleep Code Broadcast
Message
Byte

Direct
Message
Byte

31 (0x1F) Flags Flags 31 (0x1F) Flags Flags

11 (0x0B) From ID Low To ID Low 30 (0x1E) From ID Low To ID Low

10 (0x0A) From ID Mid To ID Mid 29 (0x1D) From ID Mid To ID Mid

9 (0x09) From ID Hi To ID Hi 28 (0x1C) From ID Hi To ID Hi

8 (0x08) To ID Low From ID Low 27 (0x1B) To ID Low From ID Low

7 (0x07) To ID Mid From ID Mid 26 (0x1A) To ID Mid From ID Mid

6 (0x06) To ID Hi From ID Hi 25 (0x19) To ID Hi From ID Hi

5 (0x05) Command 1 Command 1 24 (0x18) Command 1 Command 1

4 (0x04) Command 2 Command 2 23 (0x17) Command 2 Command 2

3 (0x03) CRC CRC 22 (0x16) User Data 14 User Data 14

2 (0x02) Sync Filler Sync Filler 21 (0x15) User Data 13 User Data 13

1 (0x01) Sync Filler Sync Filler 20 (0x14) User Data 12 User Data 12

0 (0x00) Sync Gap Sync Gap 19 (0x13) User Data 11 User Data 11

 18 (0x12) User Data 10 User Data 10

 17 (0x11) User Data 9 User Data 9

 16 (0x10) User Data 9 User Data 9

 15 (0x0F) User Data 8 User Data 8

 14 (0x0E) User Data 7 User Data 7

 13 (0x0D) User Data 6 User Data 6

 12 (0x0C) User Data 5 User Data 5

 11 (0x0B) User Data 4 User Data 4

 10 (0x0A) User Data 3 User Data 3

 9 (0x09) User Data 2 User Data 2

 8 (0x08) User Data 1 User Data 1

 7 (0x07) CRC CRC

 6 (0x06) Sync Filler Sync Filler

 5 (0x05) Sync Filler Sync Filler

 4 (0x04) Sync Filler Sync Filler

 3 (0x03) Sync Filler Sync Filler

 2 (0x02) Sync Filler Sync Filler

 1 (0x01) Sync Filler Sync Filler

 0 (0x00) Sync Gap Sync Gap

Dev Guide, Chapter 6 Page 74

August 16, 2007 © 2005-2007 SmartLabs Technology

The Message Flags41 byte of the INSTEON message appears first so that receivers
can reject a message and go back to sleep at the earliest opportunity. By comparing
the Max Hops value to the Hops Left value in the Message Retransmission Flags43, a
receiver can determine how many repetitions of the current message remain in a
message cycle. Inspection of the Message Type Flags42 allows a receiver to
determine if the message cycle includes an acknowledgement, or if the current
message is itself an acknowledgement message. Receivers can establish the length
of a timeslot for a message repetition by looking at the Extended Message Flag43.
Along with the Sleep Code, this information is sufficient for a receiver to calculate
how much time will elapse before a new message cycle will begin. If a receiver
further determines that there is nothing relevant to it in the current message cycle,
then it can go back to sleep and wake up again during a later message cycle.

To help a receiver determine message relevancy quickly, either the From Address
appears next in the case of Broadcast Messages, or else the To Address appears next
in the case of Direct messages. Receivers can reject SD and ED Direct and SC ALL-
Link Cleanup messages with a To Address that does not match the receiver’s
INSTEON address. They can also reject SA ALL-Link Broadcast messages with a
From Address and an ALL-Link Group Number in the To Address low byte that do not
match any ALL-Link Records in the receiver’s INSTEON ALL-Link Database101.

Dev Guide, Chapter 6 Page 75

August 16, 2007 © 2005-2007 SmartLabs Technology

i2/RF Wakeup Strategies
When a battery-powered i2/RF receiver wakes up, it will either find nothing being
transmitted, or else it will hear i2/RF traffic.

Wakeup During i2/RF Traffic
If there is i2/RF traffic, then most likely the receiver woke up somewhere in the
middle of a message cycle, in which case every fourteenth bit will be a Start-Bit,
followed by a five-bit Sleep Code. On average, a receiver will be able to wake up
and determine if there is a valid Sleep Code in a little more than one packet time, or
about 3.2 milliseconds.

If the receiver finds a Sleep Code, it can go to sleep until the beginning of the next
message timeslot. If there is a message in the next timeslot, then it is either part of
an ongoing message cycle or else it is the beginning of a new message cycle.

From the beginning of a message timeslot, the receiver will be able to reject an
irrelevant message in 5.9 milliseconds best case, but no more than 14.7 milliseconds
worst case. The best case occurs for SD or ED Direct or SC ALL-Link Cleanup
messages where the least-significant bits of the message To Address and the
receiver’s INSTEON address do not match. In the worst case, the receiver must
parse the Message Flags, the From Address, and the To Address low byte, and then
search its ALL-Link Database to determine that an ALL-Link Broadcast message is
not for it.

When a receiver rejects a message, it can go back to sleep for the rest of the
message cycle. If it woke up at the beginning of an Extended-length Direct message
cycle, this could be over 600 milliseconds. The table below gives all possible
INSTEON Full Message Cycle Times63, depending on the message length, Max Hops,
and whether the message is acknowledged or not.

INSTEON Full Message Cycle Times

Message
Length

Max
Hops

ACK? Timeslots
S = Standard
E = Extended

Powerline
Zero
Crossings

Time
(ms)

Standard 0 No 1 S 6 50

Standard 1 No 2 S 12 100

Standard 2 No 3 S 18 150

Standard 3 No 4 S 24 200

Standard 0 Yes 2 S 12 100

Standard 1 Yes 4 S 24 200

Standard 2 Yes 6 S 36 300

Standard 3 Yes 8 S 48 400

Extended 0 No 1 E 13 108.333

Extended 1 No 2 E 26 216.667

Extended 2 No 3 E 39 325

Extended 3 No 4 E 52 433.333

Extended 0 Yes 1 E + 1 S 19 158.333

Extended 1 Yes 2 E + 2 S 38 316.667

Extended 2 Yes 3 E + 3 S 57 475

Extended 3 Yes 4 E + 4 S 76 633.333

Dev Guide, Chapter 6 Page 76

August 16, 2007 © 2005-2007 SmartLabs Technology

Wakeup with No i2/RF Traffic
When an i2/RF receiver wakes up and does not detect any i2/RF traffic, then the
optimum sleep strategy is a tradeoff between maximum battery life and quickest
response to commands.

For longest battery life, a receiver should sleep as much as possible in order to
achieve as low a duty cycle as possible. When an INSTEON device sends a Direct
message to another INSTEON device, it expects an acknowledgement message. If
there is no acknowledgement, the sender’s INSTEON Engine will automatically retry
the message up to five times, each time incrementing the Max Hops value up to the
maximum of three. The table below (reprinted from INSTEON Message Retrying54,
above) shows the overall message cycle times given the initial Max Hops value and
the message length.

Time for Five Direct (Acknowledged)
Message Retries, Seconds

Beginning
Max Hops

Standard-length
Messages

Extended-length
Messages

0 1.40 2.22

1 1.70 2.69

2 1.90 3.01

3 2.00 3.17

If there is still no response after five automatic engine-level retries, an INSTEON
application can start the overall message cycle again an arbitrary number of times.
Therefore, an i2/RF receiver can go to sleep for longer than an overall message cycle
time and still catch messages from applications that retry enough times.

The table below shows the duty cycle and estimated battery life for various i2/RF
device wakeup intervals. The table assumes that the i2/RF device consumes 25
milliamps when running from AA batteries capable of supplying 2000 milliamp-hours
over their lifetime. The duty cycle is the ratio of running time to sleeping time.
Assuming that the i2/RF receiver runs for 3.2 milliseconds on average when it wakes
up to sample i2/RF traffic, then its duty cycle is

3.2 milliseconds / Wakeup Interval in seconds.

If the i2/RF device were running all of the time, then the batteries would last just 3.3
days (i.e., 2000 mAh / 25 mA = 80 hours). By decreasing the duty cycle, the
battery life increases as shown in the table. Batteries capable of supplying more or
less than 2000 mAh will, of course, last a proportionately longer or shorter time.

Note that the table does not take into account standby current while the i2/RF device
is sleeping.

Dev Guide, Chapter 6 Page 77

August 16, 2007 © 2005-2007 SmartLabs Technology

Battery Life Estimate

(2000 mAh Batteries)

Wakeup
Interval,
Seconds

Duty Cycle Days Years

0 1 3.3 -

0.1 1/31 103 0.28

0.2 1/63 210 0.58

0.3 1/94 313 0.86

0.4 1/125 417 1.14

0.5 1/156 520 1.42

1.0 1/313 1043 2.86

1.5 1/469 1563 4.28

2.0 1/625 2083 5.71

2.5 1/781 2603 7.13

3.0 1/938 3126 8.56

The table shows a clear tradeoff between command-response latency and battery
life.

i2/RF Powerline Synchronization
INSTEON BiPHY™ devices communicate via both powerline and radio. INSTEON
powerline traffic uses the powerline zero crossing as a global clock to orchestrate
message cycle timing, but i2/RF traffic may start at any time, since it can originate
from handheld devices that have no powerline zero crossing reference.

Nevertheless, i2/RF devices use the same message timeslot concept as powerline
devices do. In lieu of a hardware powerline zero crossing detector, they employ an
internal timer that counts out virtual zero crossings starting from the beginning of
the first i2/RF message in a cycle. An i2/RF message cycle therefore takes the same
amount of time as a powerline message cycle with the same number of Max Hops
and retries, except that the message cycles most probably begin at different times.
In other words, i2/RF and powerline messages are synchronous but not phase-
locked.

When a BiPHY device receives an i2/RF message, it retransmits the message over
the powerline at the next powerline zero crossing, but it retransmits the message via
RF according to the incoming 12/RF message timing.

When a BiPHY device originates a message, it transmits the message over powerline
at the next powerline zero crossing, and then it transmits the message via i2/RF as
soon thereafter as it can.

Dev Guide, Chapter 6 Page 78

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON First Generation i1/RF
Signaling

SmartLabs introduced first generation INSTEON RF (i1/RF) in May 2005. The only
product using i1/RF is the SignaLinc™ RF Signal Enhancer.

Second generation i2/RF replaces first generation i1/RF for wireless INSTEON
communications. Because i2/RF and i1/RF use different frequencies, they operate
independently.

First generation i1/RF sends and receives the same messages that appear on the
powerline. There are two i1/RF message lengths: Standard-length 10-byte
messages and Extended-length 24-byte messages. Unlike powerline messages,
however, messages sent by i1/RF are not broken up into smaller packets sent at
powerline zero crossings, but instead are sent whole.

This section describes the i1/RF Physical Layer78, i1/RF Messages79, and i1/RF
Timing79.

i1/RF Physical Layer
The table below gives the physical layer specifications for first generation INSTEON
i1/RF radios.

i1/RF Specification Value

Center Frequency 904 MHz

Modulation Method FSK

FSK Deviation 64 KHz

Data Encoding Method Manchester

Symbol Rate 76,800 symbols per second

Data Rate 38,400 bits per second

Range 150 feet outdoors

The center frequency, 904 MHz, lies in the band 902 to 924 MHz, which is permitted
for unlicensed operation in the United States. i1/RF radios cannot communicate with
i2/RF radios because they operate at different frequencies.

Symbols are modulated onto the carrier using frequency-shift keying (FSK), where a
zero-symbol modulates the carrier half the FSK deviation frequency downward and a
one-symbol modulates the carrier half the FSK deviation frequency upward. The FSK
deviation frequency chosen for INSTEON is 64 KHz.

Each bit is Manchester encoded, meaning that two symbols are sent for each bit. A
one-symbol followed by a zero-symbol designates a one-bit, and a zero-symbol
followed by a one-symbol designates a zero-bit.

Symbols are modulated onto the carrier at 76,800 symbols per second, resulting in a
raw data rata of half that, or 38,400 bits per second.

The typical range for free-space reception is 150 feet, which is reduced in the
presence of walls and other RF energy absorbers.

Dev Guide, Chapter 6 Page 79

August 16, 2007 © 2005-2007 SmartLabs Technology

i1/RF Messages
Referring to the figures below, i1/RF messages begin with two sync bytes consisting
of AAAA in hexadecimal, followed by a start code byte of C3 in hexadecimal. Ten
data bytes (80 bits) follow in Standard-length messages, or twenty-four data bytes
(192 bits) in Extended-length messages. The last data byte in a message is a CRC3
over the data bytes as explained above (see Message Integrity Byte44).

The bytes in an INSTEON i1/RF message are transmitted most-significant byte first,
and the bits are transmitted most-significant bit first.

112 total bits = 14 bytes i1/RF Standard-length Message – 1 Packet
 80 Data bits = 10 bytes

AA AA C3 x x x X x x x x x x n

2
Sync
bytes

1
Start
Code
byte

80 Data Bits (10 Data bytes) CRC3

224 total bits = 28 bytes i1/RF Extended-length Message – 1
Packet 192 Data bits = 24 bytes

AA AA C3 x x x x x x x X x x x x x x x x x x x x x x x x n

2
Sync
bytes

1
Start
Code
byte

192 Data Bits (24 Data bytes) CRC3

i1/RF Timing
It takes 2.708 milliseconds to send a 104-bit Standard-length message, and 5.625
milliseconds to send a 216-bit Extended-length message. Zero crossings on the
powerline occur every 8.333 milliseconds, so a Standard or Extended i1/RF message
can be sent during one powerline half-cycle. The waiting times after sending
powerline messages, as shown in the section Powerline BPSK Modulation58, are to
allow sufficient time for INSTEON i1/RF devices, if present, to retransmit a powerline
message.

Dev Guide, Chapter 6 Page 80

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Simulcasting
By following the above rules for message propagation, INSTEON systems achieve a
marked increase in the reliability of communications. The reason is that multiple
INSTEON devices can transmit the same message at the same time within a given
timeslot. INSTEON devices within range of each other thus “help each other out.”
Most networking protocols for shared physical media prohibit multiple devices from
simultaneously transmitting within the same band by adopting complex routing
algorithms. In contrast, INSTEON turns what is usually a problem into a benefit by
ensuring that devices transmitting simultaneously will be sending the same
messages in synchrony with each other.

Powerline Simulcasting
One might think that multiple INSTEON devices transmitting on the powerline could
easily cancel each other out rather than boost each other. In practice, even if one
were trying to nullify one signal with another, signal cancellation by multiple devices
would be extremely difficult to arrange. The reason is that for two signals to cancel
at a given receiver, the two transmitters would have to send carriers such that the
receiver would see them as exactly equal in amplitude and very nearly 180 degrees
out of phase. The probability of this situation occurring and persisting for extended
periods is low.

The crystals used on typical INSTEON devices to generate the powerline carrier
frequency of 131.65 KHz run independently of each other with a frequency tolerance
of a few tenths of a percent. Phase relationships among multiple powerline carriers
therefore will drift, although slowly with respect to the 1823 microsecond duration of
an INSTEON packet. Even if the phases of two transmitters happened to cancel, it is
very unlikely that the amplitudes would also be equal at the location of a receiver, so
a receiver would very likely still see some signal even in the worst-case transient
phase relationship. INSTEON receivers have a wide dynamic range, from millivolts
to five volts or so, which will allow them to track signals even if they fade
temporarily. Adding more transmitters reduces the probability of signal cancellation
even more. With source diversity, the probability that the sum of all the signals will
increase in signal strength rises significantly.

The INSTEON powerline carrier is modulated using binary phase-shift keying (BPSK),
meaning that receivers are looking for 180-degree phase shifts in the carrier to
detect changes in a string of bits from a one to a zero or vice-versa. Multiple
transmitters, regardless of the absolute phase of their carriers, will produce signals
whose sum still possesses 180-degree phase reversals at bit-change boundaries, so
long as their relative carrier frequencies do not shift more than a few degrees over a
packet time. Of course, bit timings for each transmitter need to be fairly well locked,
so INSTEON transmitters are synchronized to powerline zero crossings. An INSTEON
bit lasts for ten cycles of the 131.65 KHz powerline carrier, or 76 microseconds. The
powerline zero crossing detector should be accurate within one or two carrier periods
so that bits received from multiple transmitters will overlay each other.

In practice, multiple INSTEON powerline transmitters simulcasting the same
message will improve the strength of the powerline signal throughout a building.

Dev Guide, Chapter 6 Page 81

August 16, 2007 © 2005-2007 SmartLabs Technology

RF Simulcasting
Since RF signaling is used as an extension to powerline signaling, it also is based on
simulcasting. However, because of the short wavelength of 900 MHz RF carrier
signals, standing wave interference patterns can form where the RF carrier signal is
reduced, even when the carrier and data are ideally synchronized.

As with powerline, for a cancellation to occur, two carriers must be 180 degrees out
of phase and the amplitudes must be the same. Perfect cancellation is practically
impossible to obtain. In general, two co-located carriers on the same frequency with
random phase relationships and the same antenna polarization will sum to a power
level greater than that of just one transmitter 67% of the time. As one of the
transmitters is moved away from a receiver, the probability of cancellation drops
further because the signal amplitudes will be unequal. As the number of
transmitters increases, the probability of cancellation becomes nearly zero.

Mobile INSTEON RF devices, such as handheld controllers, are battery operated. To
conserve power, mobile devices are not configured as RF repeaters, but only as
message originators, so RF simulcasting is not an issue for them. INSTEON devices
that do repeat RF messages are attached to the powerline, so most of them will not
be moved around after initial setup. During setup, such RF devices can be located,
and their antennas adjusted, so that no signal cancellation occurs. With the location
of the transmitters fixed, the non-canceling configuration will be maintained
indefinitely.

Dev Guide, Chapter 7 Page 82

August 16, 2007 © 2005-2007 SmartLabs Technology

Chapter 7 — INSTEON Device
Networking

INSTEON messaging technology can be used in many different ways in many kinds of
devices. To properly utilize the full set of possible INSTEON message types, devices
must share a common set of specific, preassigned number values for the one- and
two-byte Commands, one-byte Device Categories, one-byte Device Subcategories,
and one-byte NAK Error codes. SmartLabs maintains the database of allowable
values for these parameters.

Because INSTEON devices are individually preassigned a three-byte Address at the
time of manufacture, complex procedures for assigning network addresses in the
field are not needed. Instead, INSTEON devices are logically ALL-Linked together in
the field using a simple, uniform procedure.

INSTEON Extended-length messages allow programmers to devise all kinds of
meanings for the User Data that can be exchanged among devices. For example,
some INSTEON devices include an interpreter for an application language, called
SALad, which is compiled into token strings and downloaded into devices using
Extended-length messages. Also, secure messaging can be implemented by sending
encrypted payloads in Extended-length messages.

In This Chapter

INSTEON Device Categories83
Explains how Device Categories, or DevCats, allow INSTEON Command Numbers
to be interpreted differently by different kinds of devices in an INSTEON network.

INSTEON Product Database87
Explains how an INSTEON Product Key (IPK) number stored in INSTEON devices
functions as a lookup key to an online INSTEON Product Database (IPDB)
containing detailed information about the device.

INSTEON Device ALL-Linking93
Describes how ALL-Linking allows an INSTEON Controller to operate any
INSTEON Responder even if it does not know the Direct Commands for the
Responder, explains the role of ALL-Link Groups, and gives examples of ALL-
Linking sessions.

INSTEON Security112
Gives an overview of how INSTEON handles network security issues.

Dev Guide, Chapter 7 Page 83

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Device Categories
All INSTEON Devices belong to a Device Category, or DevCat, denoted by a one-byte
hexadecimal number stored in the device’s nonvolatile read-only memory. The
primary reason for the DevCat is to allow INSTEON SD and ED Direct Command
Numbers to be reused for each category of device. In other words, each DevCat has
a separate list of SD and ED Direct Commands applicable to it. It is therefore
possible for a number designating a particular Direct Command to be interpreted
differently by devices belonging to different DevCats.

This section outlines the Currently Defined Device Categories83, , discusses Device
Categories and Subcategories84, describes the methods for Determining an INSTEON
Device’s DevCat Number84, and explains Using DevCats to Qualify INSTEON
Commands86.

Currently Defined Device Categories
The following table shows all of the DevCats defined as of the publication date of this
Developer’s Guide. Although reprinted here for convenience, the official table is
contained in the INSTEON Device Categories and Product Keys Document9 described
in the Other Documents Included by Reference9 section above.

Dev
Cat #

Device Category Examples of Devices

0x00 Generalized Controllers ControLinc, RemoteLinc, SignaLinc, etc.
0x01 Dimmable Lighting Control Dimmable Light Switches, Dimmable Plug-In Modules
0x02 Switched Lighting Control Relay Switches, Relay Plug-In Modules
0x03 Network Bridges PowerLinc Controllers, TRex, Lonworks, ZigBee, etc.
0x04 Irrigation Control Irrigation Management, Sprinkler Controllers
0x05 Climate Control Heating, Air conditioning, Exhausts Fans, Ceiling Fans, Indoor Air Quality
0x06 Pool and Spa Control Pumps, Heaters, Chemicals
0x07 Sensors and Actuators Sensors, Contact Closures
0x08 Home Entertainment Audio/Video Equipment
0x09 Energy Management Electricity, Water, Gas Consumption, Leak Monitors
0x0A Built-In Appliance Control White Goods, Brown Goods
0x0B Plumbing Faucets, Showers, Toilets
0x0C Communication Telephone System Controls, Intercoms
0x0D Computer Control PC On/Off, UPS Control, App Activation, Remote Mouse, Keyboards
0x0E Window Coverings Drapes, Blinds, Awnings
0x0F Access Control Automatic Doors, Gates, Windows, Locks
0x10 Security, Health, Safety Door and Window Sensors, Motion Sensors, Scales
0x11 Surveillance Video Camera Control, Time-lapse Recorders, Security System Links
0x12 Automotive Remote Starters, Car Alarms, Car Door Locks
0x13 Pet Care Pet Feeders, Trackers
0x14 Toys Model Trains, Robots
0x15 Timekeeping Clocks, Alarms, Timers
0x16 Holiday Christmas Lights, Displays
0x17 ⇒
0xFE

Reserved

0xFF Unassigned For devices that will be assigned a DevCat and SubCat by software

Dev Guide, Chapter 7 Page 84

August 16, 2007 © 2005-2007 SmartLabs Technology

Device Categories and Subcategories
In the past, a one-byte DevCat and a one-byte Device Subcategory (SubCat) have
been sufficient to identify an INSTEON product uniquely. Going forward, however, it
is very likely that there will not be enough SubCat numbers to uniquely identify all of
the different devices within a given DevCat. Therefore, applications should not rely
on the SubCat number for product identification, but instead they should use the
INSTEON Product Key to look up the product in the INSTEON Product Database. See
the section INSTEON Product Database87 for more information, including a table of
INSTEON Product Key and SubCat Assignments88.

Determining an INSTEON Device’s DevCat
Number

Devices disclose their DevCat and SubCat numbers during ALL-Linking within SET
Button Pressed Broadcast Messages84, or by Responding to a Product Data Request
Message85.

SET Button Pressed Broadcast Messages
INSTEON devices disclose their one-byte Device Category Number (DevCat) and
one-byte Device Subcategory Number (SubCat) whenever they send an SB
(Standard-length Broadcast) message with a Command 1 field of 0x01 (SET Button
Pressed Responder) or 0x02 (SET Button Pressed Controller). During ALL-Linking
sessions INSTEON devices send one of these messages and go into ALL-Linking Mode
whenever a user physically presses and holds the SET Button on a device. INSTEON
devices will also send one of the Set Button Pressed SB messages after receiving an
ID Request SD (Standard-length Direct) Command (0x10), although in that case
they will not actually go into ALL-Linking Mode.

Whenever an INSTEON device sends one of the Set Button Pressed SB messages,
the high byte of the 3-byte To Address field in the message contains the DevCat, and
the middle byte contains the SubCat. The low byte of the To Address field has
contained a firmware version in the past (see the next section, Responding to a
Product Data Request Message85, for an alternative way to communicate the
firmware version number). Always set this byte to 0xFF to ensure future
compatibility.

The table below shows an INSTEON SET Button Pressed SB message sent by a
device with an INSTEON ID of 0xCCCCCC, a DevCat of 0x01, and a SubCat of 0x03.
The numbers are in hexadecimal.

Dev Guide, Chapter 7 Page 85

August 16, 2007 © 2005-2007 SmartLabs Technology

SET Button Pressed Broadcast Message

From Address 0xCCCCCC

To Address H Device
Category

0x01

To Address M Device
Subcategory

0x03

To Address L Reserved
(Firmware
Version)

0xFF (Used in the past for Firmware Version
Number. Always set to 0xFF.)

Flags 0x8F (Broadcast Message,
3 Max Hops, 3 Hops Left)

Command 1 0x01 (SET Button Pressed Responder), or
0x02 (SET Button Pressed Controller)

Command 2 Reserved 0xFF (Unused. Always set to 0xFF.)

Responding to a Product Data Request Message
INSTEON devices may request other INSTEON devices to return certain product data,
including their DevCat and SubCat numbers, by sending a Product Data Request SD
(Standard-length Direct) Command. The addressee will respond with a Product Data
Response ED (Extended-length Direct) Command with the following information in
the 14-byte User Data field.

Product Data Response Extended-length
Direct Message User Data Field

Byte Data
D1 Reserved (always set to 0x00)

D2 INSTEON Product Key MSB

D3 INSTEON Product Key 2MSB

D4 INSTEON Product Key LSB

D5 Device Category (DevCat)

D6 Device Subcategory (SubCat)

D7 Reserved (always set to 0xFF)
(Matches byte in LSB of To Address of SET Button
Pushed Broadcast Commands)

D8 Reserved (always set to 0xFF)
(Matches byte in Command 2 of SET Button Pushed
Broadcast Commands)

D9 ⇒
D14

User-defined

Note that the six bytes D9 through D14 are user-defined. If desired, the firmware
version number that previously appeared in the LSB of the To Address field of SET
Button Pressed SB messages may appear here, along with any other data that the
device manufacturer may require.

Dev Guide, Chapter 7 Page 86

August 16, 2007 © 2005-2007 SmartLabs Technology

Using DevCats to Qualify INSTEON
Commands

The primary reason that INSTEON DevCats exist is to expand the space of possible
INSTEON SD and ED Direct Commands. INSTEON SD and ED Commands consist of
two bytes occupying the Command 1 and Command 2 fields of INSTEON SD
(Standard-length Direct) and ED (Extended-length Direct) messages, respectively.

Two bytes can enumerate only 65,536 possible different Commands. Considering
that many Commands use the Command 2 field as a parameter (for example, to give
a brightness level for turning on a lamp), INSTEON would soon run out of Command
space as new Commands are defined. By making SD and ED Command
interpretation dependent on the DevCat, the number of Commands is potentially
multiplied by 256, giving 16,777,216 possible SD Commands and another
16,777,216 possible ED Commands, for a total of 33,554,432 possible Direct
Commands.

An INSTEON Controller capable of sending Direct Commands will know at least some
of the available Direct Commands for controlling one or more DevCats. It is up to an
INSTEON Controller’s application program to validate that the DevCats for which it
knows the Direct Commands match the DevCats of any INSTEON Responder devices
that it ALL-Links to. After ALL-Linking, Controllers may send Direct Commands to
Responders only if the DevCat of the Direct Command matches the DevCat of the
Responder.

Responders are not required to validate Direct Commands that they receive. It is
assumed that the Controller sending the Direct Command validated that the DevCats
matched during INSTEON Device ALL-Linking93, at the same time that the Controller
learned the INSTEON ID (IID) number of the Responder. Therefore, Responders are
free to accept Direct Commands from any Controller that knows the Responder’s IID.

Dev Guide, Chapter 7 Page 87

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Product Database
All INSTEON devices are assigned a 3-byte (24-bit) number, called the INSTEON
Product Key (IPK), which functions as a lookup key to the INSTEON Product
Database (IPDB). The IPDB is currently under construction and will be maintained
by SmartLabs. Sufficiently advanced INSTEON devices that are part of an INSTEON
network with access to the Internet will be able to query the online IPDB to
determine the features and capabilities of other INSTEON devices. It will also be
possible for one or more devices in an INSTEON network to maintain a local offline
copy of the IPDB.

INSTEON Product Database information is most useful for determining Direct
Command compatibility between INSTEON Controller and Responder devices during
ALL-Linking sessions. INSTEON Device ALL-Linking93 is always permitted whether or
not the devices have access to the IPDB. If, however, there is a match between the
DevCats of ALL-Linked Controllers and Responders, Controllers are also permitted to
send SD (Standard-length Direct) and ED (Extended-length Direct) Commands to
the Responders. But even if the DevCats match, Controllers may not know some or
all of the SD and ED Commands that Responders can execute, or Controllers may
possibly send Commands that ALL-Linked Responders do not recognize. By querying
the IPDB, intelligent Controllers will be able to determine the capabilities of
Responder devices during ALL-Linking and adapt appropriately. INSTEON devices
with sufficient user interface resources will also be able to use information in the
IPDB to provide feedback to users when they interact with the device, for example
by displaying appropriate button labels.

This section gives the IPK Support Requirements87, reprints the most recently
available INSTEON Product Key and SubCat Assignments88 table, and describes the
INSTEON Product Database (IPDB)91.

IPK Support Requirements
Although legacy INSTEON devices did not support IPKs, new INSTEON devices that
ship after February 1, 2007 will be required to support them.

New INSTEON Devices
After February 1, 2007, all INSTEON devices will be required to have their 3-byte
INSTEON Product Key loaded into nonvolatile memory during manufacturing, and to
support the Product Data Request SD and Product Data Response ED Commands.
Applications may then use the Product Data Request SD Command at any time to
fetch a device’s IPK in a Product Data Response ED message. See the section
Responding to a Product Data Request Message85 above for more information.

Legacy INSTEON Devices without IPKs
INSTEON devices manufactured before the requirement to support IPKs will not
respond to a Product Data Request SD Command with a Product Data Response.
The DevCat, SubCat, and (possible) Firmware Version numbers that appear in SET
Button Pressed SB Commands issued by these devices are the only way that they
can identify themselves to other devices. See the section SET Button Pressed
Broadcast Messages84 above for more information.

Dev Guide, Chapter 7 Page 88

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Product Key and SubCat
Assignments

The following table was current as of the publication date of this Developer’s Guide.
Although reprinted here for convenience, the official table is contained in the
INSTEON Device Categories and Product Keys Document9 described in the Other
Documents Included by Reference9 section above. INSTEON DevCats and Product
Keys 20070814a.doc is the source for the table reprinted below.

The table gives examples of devices that belong to the various Device Categories
(DevCats). Devices that are already developed or under development also have a
Subcategory (SubCat) defined.

Model numbers (if known) are given in square brackets.

The table also gives INSTEON Product Keys (IPKs) that have been assigned. Legacy
products that did not have an IPK defined at the time of manufacture are marked
Legacy. IPKs are assigned sequentially.

Dev
Cat

Device Category
Name

Sub
Cat

Product
Key

Device Description [Model]

0x04 Legacy ControLinc [2430]
0x05 0x000034 RemoteLinc [2440]
0x06 Legacy Icon Tabletop Controller [2830]
0x09 Legacy SignaLinc RF Signal Enhancer [2442]
0x0A 0x000007 Balboa Instruments Poolux LCD Controller
0x0B 0x000022 Access Point [2443]

0x00

Generalized Controllers
ControLinc, RemoteLinc,
SignaLinc, etc.

0x0C 0x000028 IES Color Touchscreen
0x00 Legacy LampLinc V2 [2456D3]
0x01 Legacy SwitchLinc V2 Dimmer 600W [2476D]
0x02 Legacy In-LineLinc Dimmer [2475D]
0x03 Legacy Icon Switch Dimmer [2876D]
0x04 Legacy SwitchLinc V2 Dimmer 1000W [2476DH]
0x06 Legacy LampLinc 2-Pin [2456D2]
0x07 Legacy Icon LampLinc V2 2-Pin [2456D2]
0x09 0x000037 KeypadLinc Dimmer [2486D]
0x0A Legacy Icon In-Wall Controller [2886D]
0x0D 0x00001E SocketLinc [2454D]
0x13 0x000032 Icon SwitchLinc Dimmer for Lixar/Bell Canada

[2676D-B]

0x01

Dimmable Lighting Control
Dimmable Light Switches,
Dimmable Plug-In Modules

0x17 Legacy ToggleLinc Dimmer [2466D]
0x09 Legacy ApplianceLinc [2456S3]
0x0A Legacy SwitchLinc Relay [2476S]
0x0B Legacy Icon On Off Switch [2876S]
0x0C Legacy Icon Appliance Adapter [2856S3]
0x0D Legacy ToggleLinc Relay [2466S]
0x0E Legacy SwitchLinc Relay Countdown Timer [2476ST]
0x10 0x00001B In-LineLinc Relay [2475D]

0x02

Switched Lighting Control
Relay Switches, Relay Plug-
In Modules

0x13 0x000033 Icon SwitchLinc Relay for Lixar/Bell Canada
[2676R-B]

0x01 Legacy PowerLinc Serial [2414S]
0x02 Legacy PowerLinc USB [2414U]
0x03 Legacy Icon PowerLinc Serial [2814 S]

0x03 Network Bridges
PowerLinc Controllers, TRex,
Lonworks, ZigBee, etc.

0x04 Legacy Icon PowerLinc USB [2814U]

Dev Guide, Chapter 7 Page 89

August 16, 2007 © 2005-2007 SmartLabs Technology

Dev
Cat

Device Category
Name

Sub
Cat

Product
Key

Device Description [Model]

0x05 0x00000C Smartlabs Power Line Modem Serial [2412S]

0x04
Irrigation Control
Irrigation Management,
Sprinkler Controllers

0x00 0x000001 Compacta EZRain Sprinkler Controller

0x00 Legacy Broan SMSC080 Exhaust Fan
0x01 0x000002 Compacta EZTherm
0x02 Legacy Broan SMSC110 Exhaust Fan
0x03 0x00001F Venstar RF Thermostat Module

0x05

Climate Control
Heating, Air conditioning,
Exhausts Fans, Ceiling Fans,
Indoor Air Quality

0x04 0x000024 Compacta EZThermx Thermostat

0x06 Pool and Spa Control
Pumps, Heaters, Chemicals

0x00 0x000003 Compacta EZPool

0x00 0x00001A IOLinc
0x01 0x000004 Compacta EZSns1W Sensor Interface Module
0x02 0x000012 Compacta EZIO8T I/O Module
0x03 0x000005 Compacta EZIO2X4 #5010D INSTEON/X10 I/O

Module for Dakota Alerts Products
0x04 0x000013 Compacta EZIO8SA I/O Module
0x05 0x000014 Compacta EZSnsRx RF #5010E Receiver Interface

Module

0x07

Sensors and Actuators
Sensors, Contact Closures

0x06 0x000015 Compacta EZISnsRf Sensor Interface Module

0x08 Home Entertainment
Audio/Video Equipment

0x00 0x000006 Compacta EZEnergy
0x01 0x000020 OnSitePro Leak Detector
0x02 0x000021 OnSitePro Control Valve
0x03 0x000025 Energy Inc. TED Measuring Transmitting Unit

(MTU)

0x09

Energy Management
Electricity, Water, Gas
Consumption, Leak Monitors

0x04 0x000026 Energy Inc. TED Receiving Display Unit (RDU)

0x0A Built-In Appliance Control
White Goods, Brown Goods

0x0B Plumbing
Faucets, Showers, Toilets

0x0C
Communication
Telephone System Controls,
Intercoms

0x0D
Computer Control
PC On/Off, UPS Control, App
Activation, Remote Mouse,
Keyboards

0x0E Window Coverings
Drapes, Blinds, Awnings

0x00 0x00000B Somfy Drape Controller RF Bridge

0x00 0x00000E Weiland Doors Central Drive and Controller
0x01 0x00000F Weiland Doors Secondary Central Drive
0x02 0x000010 Weiland Doors Assist Drive

0x0F
Access Control
Automatic Doors, Gates,
Windows, Locks

0x03 0x000011 Weiland Doors Elevation Drive

0x10
Security, Health, Safety
Door and Window Sensors,
Motion Sensors, Scales

0x00 0x000027 First Alert ONELink RF to INSTEON Bridge

0x11
Surveillance
Video Camera Control, Time-
lapse Recorders, Security
System Links

0x12
Automotive
Remote Starters, Car Alarms,
Car Door Locks

0x13 Pet Care
Pet Feeders, Trackers

0x14 Toys
Model Trains, Robots

Dev Guide, Chapter 7 Page 90

August 16, 2007 © 2005-2007 SmartLabs Technology

Dev
Cat

Device Category
Name

Sub
Cat

Product
Key

Device Description [Model]

0x15 Timekeeping
Clocks, Alarms, Timers

0x16 Holiday
Christmas Lights, Displays

0x17
⇒

0xFE

Reserved

0xFF
Unassigned
For devices that will be
assigned a DevCat and
SubCat by software

Dev Guide, Chapter 7 Page 91

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Product Database (IPDB)
The INSTEON Product Database (IPDB) will contain up to 16,777,216 records, each
of which will refer to a distinct INSTEON product. The primary lookup key to a
record in the IPDB will be the 3-byte INSTEON Product Key (IPK).

SmartLabs will host and maintain the online IPDB server.

Local IPDB Server
Devices on an INSTEON network that have sufficient resources may download full or
partial copies of the IPDB in order to function as a local IPDB server. When a local
IPDB server is available, the INSTEON network will only need to connect to the
Internet intermittently. The rules for refreshing a stale local IPDB are not yet
defined.

IPDB Record Fields
Some of the fields associated with an IPDB record may include:

• INSTEON device manufacturer

• Manufacturer’s part number

• Device description

• Device Category

• Device Category (DevCat) Number (1 byte)

• Device Subcategory (SubCat) Number (1 byte)

• Device Category text description

• Text description

• Powerline, radio, or both?

• Market

• Power requirements

• User interface

• Link to User Guide

• Link to photo

• Device capabilities (associated with Firmware Version number)

• Release date

• List of INSTEON Commands supported

• FX Commands supported?

• FX Username

• List of FX Commands

• SALad enabled?

• Controller, Responder, or both?

• Secure?

Dev Guide, Chapter 7 Page 92

August 16, 2007 © 2005-2007 SmartLabs Technology

IPDB Query Response
When the IPDB is accessed with an INSTEON Product Key, the information in the
IPDB record will be returned in XML format, so that it is both machine and human
readable. The schema for this XML file is not yet defined.

Dev Guide, Chapter 7 Page 93

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Device ALL-Linking
When a user adds a new device to an INSTEON network, the newcomer device joins
the network automatically, in the sense that it can hear INSTEON messages and will
repeat1 them automatically according to the INSTEON protocol. So, no user
intervention is needed to establish an INSTEON network of communicating devices.

However, for one INSTEON device to control other INSTEON devices, the devices
must be logically ALL-Linked together. INSTEON provides two very simple methods
for ALL-Linking devices—manual ALL-Linking using button pushes, and electronic
ALL-Linking using INSTEON messages.

INSTEON ALL-Link Groups
During ALL-Linking, users create associations between events that can occur in an
INSTEON Controller, such as a button press or a timed event, and the actions of an
ALL-Link Group of one or more Responders. This section defines ALL-Link Group
Behavior93, explains the Number of ALL-Links Supported93, shows how to handle
Controllers with Multiple Buttons per ALL-Link Group94, differentiates between ALL-
Link Groups and ALL-Links94, and gives Examples of ALL-Link Groups95.

ALL-Link Group Behavior
When an INSTEON Responder device ALL-Links to an INSTEON Controller device by
joining one of the Controller’s ALL-Link Groups, the Responder memorizes the state
that it is in at the time of ALL-Linking, and associates that state with the Controller’s
INSTEON ID (IID) number and the ALL-Link Group Number that it is joining.

After ALL-Linking, the Responder goes back into the previously memorized state
whenever it receives an ALL-Link Broadcast message with

10. A From Address matching the stored IID of the Controller,

11. An ALL-Link Group Number in the To Address low byte matching a stored ALL-
Link Group Number, and

12. A Command 1 field containing an ALL-Link Recall Command.

NOTE 1: The ‘time of ALL-Linking’ is the time that the user pushes the Responder’s
SET Button.

NOTE 2: An ALL-Link Group Number of 0xFF denotes all devices linked to a
Controller. Responders interpret an ALL-Link Group Number of 0xFF in the To
Address low byte as matching any stored ALL-Link Group Number.

NOTE 3: If the Responder is a Dimmable Lighting Control (DevCat 0x01), then the
first time that it ALL-Links to a Controller, it must be in a fully on state, to avoid
inadvertently linking in an off state. If a dimmer were to link in an off state, then it
would appear that the dimmer was not working when the user first tried to turn it
on.

Number of ALL-Links Supported
Each Controller device (with a unique IID) may create up to 256 ALL-Link Groups
that one or more Responders can ALL-Link to. The minimum number of ALL-Link
Groups for a Controller IID is one.

Dev Guide, Chapter 7 Page 94

August 16, 2007 © 2005-2007 SmartLabs Technology

The maximum number of Responders that may ALL-Link to a given ALL-Link Group
in a Controller depends only on the available memory for the Link Database in the
Controller. Similarly, the maximum number of ALL-Link Groups that a Responder
may join depends only on the available memory for the ALL-Link Database in the
Responder. The minimum number of ALL-Link Groups that a Responder may join is
one.

The time it takes to search a Responder’s ALL-Link Database can present a practical
limit on how many ALL-Link Groups a Responder may belong to. Before executing
the Command in an SA ALL-Link Broadcast or SC ALL-Link Cleanup message, a
Responder must search its Link Database for an IID and ALL-Link Group Number
match, and this search takes time. The search time depends on the design of the
database—a Threaded ALL-Link Database (ALDB/T)105, as used in devices like the
SmartLabs PowerLinc™ Controller, is significantly faster to search than a Linear ALL-
Link Database (ALDB/L)102, as used in simpler devices. A safe practical limit is fifty
ALL-Link Group memberships for a Responder that uses linear searches.

Controllers with Multiple Buttons per ALL-Link Group
An ALL-Link Group typically corresponds to a single button on a Controller. For
example, a Controller might have one button labeled Scene 1 On and another button
labeled Scene 1 Off. A user could then ALL-Link the Scene 1 On button to one or
more lamp dimmers in the ON state (forming ALL-Link Group 1), and ALL-Link the
Scene 1 Off button to the same lamp dimmers in the OFF state (forming ALL-Link
Group 2).

However, many INSTEON Controllers have toggle buttons or pairs of buttons that
correspond to a single ALL-Link Group. A toggle button typically alternates between
sending an ALL-Link Recall Command and an ALL-Link Alias 1 Low Command each
time a user presses it. (See the next section for an explanation of ALL-Link Alias
Commands116.)

In the case of paired buttons, the most common configuration is an ON/OFF pair.
The ON button usually sends an ALL-Link Recall Command and the OFF button sends
an ALL-Link Alias 1 Low Command. There are other configurations as shown in the
table below.

Toggle or Paired Button ALL-Link Commands

HIGH State

(Toggle ON or Button 1)

LOW State

(Toggle OFF or Button 2)

ALL-Link Recall ALL-Link Alias 1 Low

ALL-Link Alias 2 High ALL-Link Alias 2 Low

ALL-Link Alias 3 High ALL-Link Alias 3 Low

ALL-Link Alias 4 High ALL-Link Alias 4 Low

ALL-Link Groups and ALL-Links
An ALL-Link Group is a set of logical ALL-Links between INSTEON devices. An ALL-
Link is an association between a Controller and a Responder or Responders.
Controllers originate ALL-Link Groups, and Responders join ALL-Link Groups.

Dev Guide, Chapter 7 Page 95

August 16, 2007 © 2005-2007 SmartLabs Technology

Internally, in an INSTEON ALL-Link Database101 maintained by INSTEON devices, an
ALL-Link Group ID consists of 4 bytes—the 3-byte address of the Controller, and a 1-
byte ALL-Link Group Number. A Controller assigns ALL-Link Group Numbers as
needed to the various physical or logical events that it supports. For example, a
single press of a certain button could send commands to one ALL-Link Group, and a
double press of the same button could send commands to another ALL-Link Group.
The Controller determines which commands are sent to which ALL-Link Groups.

An ALL-Link Group can have one or many members, limited only by the memory
available for the ALL-Link Database.

Examples of ALL-Link Groups
A device configured as a wall switch with a paddle could be designed to support one,
two, or three ALL-Link Groups, as shown in the following examples.

One ALL-Link Group

Controller Event Group Action of ALL-Link Group Responders

Tap Top 1 Turn On

Tap Bottom 1 Turn Off

Hold Top 1 Brighten

Hold Bottom 1 Dim

Two ALL-Link Groups

Controller Event Group Action of ALL-Link Group Responders

Tap Top 1 Turn On

Tap Top Again 1 Turn Off

Tap Bottom 2 Turn On

Tap Bottom Again 2 Turn Off

Three ALL-Link Groups

Controller Event Group Action of ALL-Link Group Responders

Tap Top 1 Turn On

Tap Bottom 1 Turn Off

Double Tap Top 2 Turn On

Double Tap Bottom 2 Turn Off

Triple Tap Top 3 Turn On

Triple Tap Bottom 3 Turn Off

Dev Guide, Chapter 7 Page 96

August 16, 2007 © 2005-2007 SmartLabs Technology

Methods for ALL-Linking INSTEON Devices
There are two ways to create ALL-Links among INSTEON devices, Manual ALL-
Linking96 and Electronic ALL-Linking96. This section also gives an Example of an
INSTEON ALL-Linking Session97.

Manual ALL-Linking
Easy setup is very important for products sold to a mass market. INSTEON devices
can be ALL-Linked together very simply:

• Push and hold for 10 seconds the button that will control an INSTEON device.

• Push and hold a button on the INSTEON device to be controlled.

This kind of manual ALL-Linking implements a form of security. Devices cannot be
probed by sending messages to discover their addresses—a user must have physical
possession of INSTEON devices in order to ALL-Link them together.

Designers are free to add to this basic ALL-Linking procedure. For example, when
multiple devices are being ALL-Linked to a single button on a Controller, a multilink
mode could enable a user to avoid having to press and hold the button for 10
seconds for each new device.

There must also be procedures to unlink devices from a button, and ways to clear
ALL-Links from buttons in case devices ALL-Linked to them are lost or broken. See
the INSTEON ALL-Link Database101 section below for more information on this point.

Electronic ALL-Linking
As the example below shows (see Example of an INSTEON ALL-Linking Session97),
ALL-Linking is actually accomplished by sending INSTEON messages, so a PC or
other device can create ALL-Links among devices if the device addresses are known
and if devices can respond to the necessary commands.

To maintain security, PC-INSTEON interface devices such as SmartLabs’ PowerLinc™
V2 Controller (PLC) mask the two high bytes of the address fields in INSTEON
messages received from unknown devices. Devices are only known if there is an
ALL-Link to the device stored in the ALL-Link Database of the PLC, or if the
message’s To Address matches that of the PLC. Such ALL-Links must have been
previously established by manual button pushing or else by manually typing in the
addresses of ALL-Linked devices (see Masking Non-linked Network Traffic112, below).

Dev Guide, Chapter 7 Page 97

August 16, 2007 © 2005-2007 SmartLabs Technology

Example of an INSTEON ALL-Linking Session
This section outlines the message exchange that occurs when a Controller and
Responder set up an ALL-Link relationship. In this scenario, a SmartLabs
ControLinc™ V2 is the Controller, and a SmartLabs LampLinc™ V2 is the Responder.
Numbers are in hexadecimal.

Message 1 ControLinc: “I’m looking for ALL-Link Group
members”

ControLinc, with address of 00 00 CC, sends a SET Button Pressed Controller
Broadcast message indicating it is now listening for Responders to be added to
ALL-Link Group 1.

From Address 00 00 CC (ControLinc)

Device Type 00 0A (ControLinc) To Address

Firmware Version 0C

Flags 8F (Broadcast Message,
3 Max Hops, 3 Hops Left)

Command 1 02 (SET Button Pressed
Controller)

00 00 CC 00 04 0C 8F 02 00

Command 2 Device Attributes 00 (Not used)

Message 2 LampLinc: “My SET Button has been pressed”

LampLinc, with address of 00 00 AA, sends a SET Button Pressed
Responder Broadcast message. When the ControLinc hears this, it will
respond with a message to join ALL-Link Group 1.

From Address 00 00 AA (LampLinc)

Device Type 00 02 (LampLinc) To Address

Firmware Version 30

Flags 8F (Broadcast Message,
3 Max Hops, 3 Hops Left)

Command 1 01 (SET Button Pressed
Responder)

00 00 AA 00 02 30 8F 01 00

Command 2 Device Attributes 00 (Not used)

Message 3 ControLinc: “Okay, join ALL-Link Group 1”

ControLinc (00 00 CC) sends message to LampLinc (00 00 AA) to join Group 1.

From Address 00 00 CC (ControLinc)

To Address 00 00 AA (LampLinc)

Flags 0F (Direct Message,
3 Max Hops, 3 Hops Left)

Command 1 01 (Assign to ALL-Link Group)

00 00 CC 00 00 AA 0F 01 01

Command 2 01 (ALL-Link Group 1)

Dev Guide, Chapter 7 Page 98

August 16, 2007 © 2005-2007 SmartLabs Technology

Message 4 LampLinc: “I joined ALL-Link Group 1”

LampLinc (00 00 31) sends ACK to ControLinc (00 00 10).

From Address 00 00 AA (LampLinc)

To Address 00 00 CC (ControLinc)

Flags 2F (ACK of Direct Message,
3 Max Hops, 3 Hops Left)

Command 1 01 (Assign to ALL-Link Group)

00 00 AA 00 00 CC 2F 01 01

Command 2 01 (ALL-Link Group 1)

Dev Guide, Chapter 7 Page 99

August 16, 2007 © 2005-2007 SmartLabs Technology

Example of an ALL-Link Command Sequence
This example illustrates how messages containing ALL-Link Commands are passed
from device to device in an ALL-Link Group. In this scenario, a SmartLabs
ControLinc™ V2 ALL-Linked to two SmartLabs LampLinc™ V2 Dimmers in ALL-Link
Group 1 commands them to turn on. Numbers are in hexadecimal.

Note that the SA ALL-Link Broadcast message (which both LampLinc Dimmers
should respond to immediately) is followed by an acknowledged SC ALL-Link Cleanup
message to each LampLinc Dimmer (in case they didn’t get the Broadcast).

Message 1 ControLinc: “ALL-Link Group 1, turn on”

ControLinc, with address of 00 00 CC, sends an ALL-Link Broadcast message
to ALL-Link Group 1, with a Command of On.

From Address 00 00 CC (ControLinc)

Unused 00 00 To Address

ALL-Link Group
Number

01

Flags CF (ALL-Link Broadcast Message,
3 Max Hops, 3 Hops Left)

Command 1 11 (On)

00 00 CC 00 00 01 CF 11 00

Command 2 00 (Unused)

Message 2 ControLinc: “LampLinc A, turn on”

ControLinc (00 00 CC) sends an ALL-Link Cleanup message to
LampLinc A (00 00 AA) in ALL-Link Group 1, with a Command of On.

From Address 00 00 CC (ControLinc)

To Address 00 00 AA (LampLinc A)

Flags 4F (ALL-Link Cleanup Message,
3 Max Hops, 3 Hops Left)

Command 1 11 (On)

00 00 CC 00 00 AA 4F 11 01

Command 2 ALL-Link Group
Number

01

Dev Guide, Chapter 7 Page 100

August 16, 2007 © 2005-2007 SmartLabs Technology

Message 3 LampLinc A: “I turned on”

LampLinc A (00 00 AA) sends ACK to ControLinc (00 00 CC).

From Address 00 00 AA (LampLinc A)

To Address 00 00 CC (ControLinc)

Flags 2F (ACK of Direct Message,
3 Max Hops, 3 Hops Left)

Command 1 11 (On)

00 00 AA 00 00 CC 2F 11 01

Command 2 ALL-Link Group
Number

01

Message 4 ControLinc: “LampLinc B, turn on”

ControLinc (00 00 CC) sends an ALL-Link Cleanup message to
LampLinc B (00 00 BB) in ALL-Link Group 1, with a Command of On.

From Address 00 00 CC (ControLinc)

To Address 00 00 BB (LampLinc B)

Flags 4F (ALL-Link Cleanup Message,
3 Max Hops, 3 Hops Left)

Command 1 11 (On)

00 00 CC 00 00 BB 4F 11 01

Command 2 ALL-Link Group
Number

01

Message 5 LampLinc B: “I turned on”

LampLinc B (00 00 BB) sends ACK to ControLinc (00 00 CC).

From Address 00 00 BB (LampLinc B)

To Address 00 00 CC (ControLinc)

Flags 2F (ACK of ALL-Link Cleanup
Message,
3 Max Hops, 3 Hops Left)

Command 1 11 (On)

00 00 BB 00 00 CC 2F 11 01

Command 2 ALL-Link Group
Number

01

An INSTEON Controller will send SC ALL-Link Cleanup Commands to all Responder
devices in an ALL-Link Group, unless other INSTEON traffic interrupts the cleanup, in
which case the ALL-Link Cleanups will stop.

Dev Guide, Chapter 7 Page 101

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON ALL-Link Database
Every INSTEON device stores an ALL-Link Database in nonvolatile memory,
representing Controller/Responder relationships with other INSTEON devices.
Controllers know which Responders they are ALL-Linked to, and Responders know
which Controllers they are ALL-Linked to. ALL-Link data is therefore distributed
among devices in an INSTEON network.

If a Controller is ALL-Linked to a Responder, and the Responder is removed from the
network without updating the Controller’s ALL-Link Database, then the Controller will
retry messages intended for the missing Responder. The retries, which are
guaranteed to fail, will add unnecessary traffic to the network. It is therefore very
important for users to unlink INSTEON Responder devices from Controllers when
unused Responders are removed. Unlinking is normally accomplished in the same
way as ALL-Linking—press and hold a button on the Controller, then press and hold a
button on the Responder.

Because lost or broken Responder devices cannot be unlinked using a manual
unlinking procedure, Controllers must also have an independent method for unlinking
missing Responders. Providing a ‘factory reset’ procedure for a single Controller
button, or for the entire Controller all at once, is common.

When a Controller is removed from the network, it should likewise be unlinked from
all of its Responder devices before removal, or else the ALL-Link Databases in the
Responders will be cluttered up with obsolete links. A ‘factory reset’ should be
provided for Responder devices for this purpose.

There are two forms of ALL-Link Database Record, a high-performance threaded one
for devices with a large number of ALL-Links such as SmartLabs’ PowerLinc™ V2
Controller, and another, linear one for devices with limited memory. This section
describes both.

In This Section

Linear ALL-Link Database (ALDB/L)102
Gives the layout of the Linear ALL-Link Database used in low-cost INSTEON
devices with limited memory.

Threaded ALL-Link Database (ALDB/T)105
Explains the structure of the Threaded ALL-Link Database for high-performance
devices such as the SmartLabs PowerLinc™ V2 Controller.

Dev Guide, Chapter 7 Page 102

August 16, 2007 © 2005-2007 SmartLabs Technology

Linear ALL-Link Database (ALDB/L)
INSTEON devices with limited memory, such as SmartLabs’ ControLinc™ V2,
SwitchLinc™ V2, LampLinc™ V2, or ApplianceLinc™ V2, contain an ALL-Link Database
whose records are stored sequentially, rather than in separate linked lists as in a
Threaded ALL-Link Database (ALDB/T)105. Nevertheless, the data contained in a
given record is similar.

SmartLabs does not recommend that you write your own ALDB/L routines. Instead,
you can use new i2 INSTEON Commands for reading and writing ALDB/L records
without having to know anything about the ALDB/L’s internal organization. At a
higher level, both the SmartLabs Device Manager and INSTEON Modems have
ALDB/L utility routines that insulate you from the details.

Nevertheless, if you still need to write your own routines, the information below
should be sufficient for you to manipulate an ALDB/L directly using the INSTEON
Peek and Poke Commands discussed in Using Peek and Poke Commands for One
Byte162.

ALDB/L Overview
The ALDB/L starts at the top of external (serial) EEPROM and grows downward. In
most limited-memory INSTEON devices, top of memory is 0x0FFF. Each ALDB/L
Record is 8 bytes long, so the first record starts at 0x0FF8, the second record starts
at 0x0FF0, and so on. The ALDB/L starts out containing only one 8-byte physical
record.

In what follows, the 3-byte INSTEON Address contained in a record is called the
Device ID or sometimes just the ID. The high byte (MSB) of the Device ID is ID2,
the middle byte is ID1, and the low byte (LSB) is ID0.

Dev Guide, Chapter 7 Page 103

August 16, 2007 © 2005-2007 SmartLabs Technology

ALDB/L Record Format
The table below gives the format of an ALDB/L record. The explanation following the
table walks you through the meaning of bits 1, 6, and 7 of the Record Control byte.
(Bits 2 through 5 are product dependent. Contact the product manufacturer for the
specific interpretation.) The Device ID is stored as three contiguous bytes, ID2 first.
The other fields, Group, Data 1, Data 2, and Data 3, serve the same purpose as the
corresponding fields in a Threaded ALL-Link Database (ALDB/T)105. The table lists
the record contents in the same order that they appear in memory, i.e. the first byte,
Record Control, is stored at the lowest memory address.

Linear ALL-Link Database (ALDB/L) Record Format

Field Length
(bytes)

Description

Record
Control

1 Record Control Flag Bits:

Bit 7: 1 = Record is in use, 0 = Record is available

Bit 6: 1 = Controller (Master) of Device ID, 0 = Responder to (Slave of) Device ID

Bit 5: Product dependent

Bit 4: Product dependent

Bit 3: Product dependent

Bit 2: Product dependent

Bit 1: 1 = Record has been used before, 0 = ‘High-water Mark’

Bit 0: Reserved

Group 1 ALL-Link Group Number this Device ID belongs to (see INSTEON ALL-Link Groups93)

ID 3 Device ID (ID2, ID1, ID0 in that order)

Data 1 1 Link-specific data (e.g. On-Level)

Data 2 1 Link-specific data (e.g. Ramp Rates, Setpoints, etc.)

Data 3 1 Link-specific data (normally unused)

Adding Records to an ALDB/L
To add a record to an ALDB/L, you search for an existing record that is marked
available. (Available means the same as empty, unused or deleted.) If none is
available, you create a new record at the end of the ALDB/L.

An unused record will have bit 7 of the Record Control byte set to zero. The last
record in an ALDB/L will have bit 1 of the Record Control byte set to zero.

Overwriting an Empty ALDB/L Record

If you found an empty record, you simply overwrite it with your new record data.

Change bit 7 of the Record Control byte from zero to one to show that the record is
now in use.

Set bit 6 of the Record Control byte to one if the device containing the ALDB/L is an
INSTEON Controller of the INSTEON Responder Device whose ID is in the record. If
instead the device containing the ALDB/L is an INSTEON Responder to the INSTEON
Controller Device whose ID is in the record, then clear bit 6 of the Record Control
byte to zero. In other words, within an ALDB/L, setting bit 6 means “I’m a
Controller,” and clearing bit 6 means “I’m a Responder.”

Dev Guide, Chapter 7 Page 104

August 16, 2007 © 2005-2007 SmartLabs Technology

Put the ALL-Link Group number in the Group field, and put the Device ID in the ID
field. Finally, set the Data 1, Data 2, and Data 3 fields appropriately for the Record
Class you are storing.

Creating a New ALDB/L Record

To create a new record at the end of the ALDB/T, find the record with bit 1 of the
Record Control byte set to zero, indicating that it is the last record in the ALDB/L.
Flip that bit to one.

Next, subtract 8 from the address of the Record Control byte in the record you just
altered, and write a new Record Control byte there with bit 1 set to zero to show that
this record is the new last record. Write all of the other information in the new
record just as you would when Overwriting an Empty ALDB/L Record103.

Deleting Records from an ALDB/L
Deleting an existing record from an ALDB/L is simple—just set bit 7 of the Record
Control byte to zero.

If the record you just deleted is the one immediately preceding the last record (i.e.
the record with bit 1 of its Record Control byte set to one), then you should mark the
newly-deleted record as the new last record, by flipping bit 1 of its Record Control
byte to one.

Searching an ALDB/L
The most common search of an ALDB/L is for a particular 3-byte INSTEON ID and 1-
byte ALL-Link Group number matching the Device ID and Group fields in a record.
You will have to search the ALDB/L from the beginning until you find what you are
looking for, or until you get to the end without finding it.

If you are searching the database for something that may occur multiple times, such
as all records with a given ALL-Link Group Number, then you will have to look at all
of the records in the ALDB/L.

Dev Guide, Chapter 7 Page 105

August 16, 2007 © 2005-2007 SmartLabs Technology

Threaded ALL-Link Database (ALDB/T)
Because a Threaded ALL-Link Databases (ALDB/T) is 128 times faster to search than
a Linear ALL-Link Database (ALDB/L)102, INSTEON devices such as SmartLabs’
PowerLinc™ V2 Controller (PLC) employ the threaded version in order to support ALL-
Linking to a large number of other INSTEON devices.

High performance in the ALDB/T comes at the cost of some increase in complexity.
SmartLabs does not recommend that you write your own ALDB/T routines. Instead,
you can use new i2 INSTEON Commands for reading and writing ALDB/T records
without having to know anything about the ALDB/T’s internal organization. At a
higher level, both the SmartLabs Device Manager and the SALad coreApp Program272
have ALDB/T utility routines that insulate you from the details.

During SALad code development, you can directly read and write records to an
ALDB/T if you are using the SALad Integrated Development Environment (IDE). See
the PLC Database326 section of the SALad Integrated Development Environment
User’s Guide287.

Although not for the faint of heart, the information below should be sufficient for you
to write your own routines for manipulating an ALDB/T directly using IBIOS Serial
Commands196 or the INSTEON Peek and Poke Commands discussed in Using Peek
and Poke Commands for One Byte162.

ALDB/T Overview
An ALDB/T starts at the top of external (serial) EEPROM and grows downward.
Because of the way Flat Memory Addressing168 works, top of memory can always be
found at 0xFFFF.

Each ALDB/T record is 8 bytes long, so the first physical record starts at 0xFFF8, the
second physical record starts at 0xFFF0, and so on. The ALDB/T starts out
containing a minimum of 128 physical records, so it occupies the top 1024 bytes of
external EEPROM. The ALDB/T can grow larger than 1024 bytes, until it bumps up
against the SALad application or other code that grows upward from the bottom of
EEPROM.

In what follows, the 3-byte INSTEON Address contained in a record is called the
Device ID or sometimes just the ID. The high byte (MSB) of the Device ID is ID2,
the middle byte is ID1, and the low byte (LSB) is ID0. MSb and LSb refer to most
and least significant bits, respectively. All addresses refer to the Flat Memory
Map170.

ALDB/T Record Format
The table below gives the format of an ALDB/T record. The explanation following the
table walks you through the meaning of the Record Control field. The other fields,
Group, Data 1, Data 2, and Data 3, serve the same purpose as the corresponding
fields in a Linear ALL-Link Database (ALDB/L)102. The table lists the record contents
in the same order that they appear in memory, i.e. the first byte of Record Control is
stored at the lowest memory address.

Dev Guide, Chapter 7 Page 106

August 16, 2007 © 2005-2007 SmartLabs Technology

Threaded ALL-Link Database (ALDB/T) Record Format

Field Length
(bytes)

Description

Record
Control

2 1st Byte 2nd Byte
 76543210 76543210 Record Class:
 XXXXXXXX XXXXXXXX 00 Deleted (ID0 LSb = 1 indicates end of ALDB/T)
Link----++++++++--+++++||| 01 Other (extended class)
Record Class-----------++| 10 INSTEON Responder to (Slave of) Device ID
ID0 LSb------------------+ 11 INSTEON Controller (Master) of Device ID

Link gives the 13 MSbs of the 16-bit address of the next record in this one of 128 possible
database threads. The 3 LSbs of this address are 0.

If the 8 MSbs of Link are 0, this is the last record in the thread.

If the 8 MSbs of Link are 0, the Record Class is 00, and ID0 LSb is 1, then this is the last
physical record in the database.

The 16-bit address of the first record in a thread is computed from ID0 by shifting ID0 left 2
(i.e. multiplying ID0 by 4), complementing the 16-bit result, then setting the 3 LSbs to 0.

Record Class indicates whether the record is available (Deleted), for an INSTEON Controller
(Master), for an INSTEON Responder (Slave), or user-defined (Other).

ID0 LSb is the LSb of ID0 in the Device ID.

ID1 1 Middle byte of the Device ID

ID2 1 High (MSB) byte of the Device ID

Group 1 ALL-Link Group Number this Device ID belongs to (see INSTEON ALL-Link Groups93)

Data 1 1 Link-specific data (e.g. On-Level)

Data 2 1 Link-specific data (e.g. Ramp Rates, Setpoints, etc.)

Data 3 1 Link-specific data (normally unused)

Each record in the ALDB/T contains the ID of an INSTEON device that the PLC is ALL-
Linked to. The PLC may be ALL-Linked to the same ID multiple times, each time in a
different ALL-Link Group. To search for or to store a record in the ALDB/T, you use
the least-significant byte of the record’s ID, i.e. ID0, as a lookup key.

ALDB/T Threads
The ALDB/T is organized as a set of 128 linked lists of records. In the following
discussion, each linked list is called a thread.

A record’s ID0 tells which thread to store the record in. All records with the same
ID0 will be stored somewhere in the same thread. There are only 128 threads, but
the value of ID0 can range from 0 to 255 (0x00 to 0xFF), so both even and odd ID0
numbers are stored in the same thread. Thus, records with an ID0 of 0x00 or 0x01
will be stored in the first thread, records with an ID0 of 0x02 or 0x03 will be stored
in the second thread, and so forth, up to records with an ID0 of 0xFE or 0xFF, which
will be stored in the 128th thread.

The first record in the first thread is located at the top of memory, occupying 8
memory locations from 0xFFF8 to 0xFFFF. The first record in the second thread
starts 8 bytes below the first record, at 0xFFF0. The first records for the remaining
126 threads each occupy the next lower 8 bytes, down to a starting point of 0xFC00
for the first record in the 128th thread.

Now, given a particular ID0, you can calculate the memory address of the first record
in the thread for that ID0 very simply. Just multiply ID0 by four (that is, shift it left

Dev Guide, Chapter 7 Page 107

August 16, 2007 © 2005-2007 SmartLabs Technology

by 2 into a 16-bit value), complement the 16-bit value, and then set the 3 LSbs of
the 16-bit value to 0 by ANDing the 16-bit value with 0xFFF8.

As an example, let’s try an ID0 of 0x01. Shifting left 2 gives 0x0004.
Complementing gives 0xFFF83. ANDing with 0xFFF8 gives 0xFFF8, which is the
correct starting address of the first record in the first thread, as expected. Note that
starting with an ID0 of 0x00, you would get the same record starting address. The
table below shows this and a few other examples.

Calculating an ALDB/T Record Address from ID0

ID0 Shifted
Left 2

Complemented ANDed with
0xFFF8 =
ALDB/T
Thread
Address

Thread
Number

0x00 0x0004 0xFF83 0xFFF8 0

0x01 0x0006 0xFF81 0xFFF8 0

… … … … …

0x37 0x00DC 0xFF23 0xFF20 27

… … … … …

0xA2 0x0288 0xFD77 0xFD70 81

… … … … …

0xFE 0x03F8 0xFC07 0xFC00 127

0xFF 0x03FC 0xFC03 0xFC00 127

ALDB/T Record Control Field
The first two bytes of a record contain a 16-bit value called the Record Control field.

Link to Next Record

When you take the 3 LSbs of the Record Control field to be zero, the full 16 bits of
the field make up a memory address that points to the first byte of another 8-byte
ALDB/T record. In other words, the top 13 bits of the Record Control field, along
with 3 more low bits set to zero, constitute a memory pointer, or Link, that always
takes the form 0xXXX0 or 0xXXX8.

The Link within an ALDB/T record gives the memory address (i.e. points to) the next
ALDB/T record in a thread. If there is no next record, then the top 8 bits of Link will
be set to zero to designate the last record in a thread.

ID0 Least-Significant Bit

Bit 0, the LSb, of the Record Control field indicates whether ID0 for this record is
even or odd. Called ID0 LSb, this bit is just the LSb of ID0 for the record, as
advertised. We need this bit because a given thread contains all of the records
whose ID0 is the same except for the LSb. In other words, knowing which thread
we’re in tells what the top seven bits of ID0 are, and ID0 LSb tells what the low bit
is.

Record Class

Bits 2 and 1 of the Record Control field designate the ALDB/T record’s Record Class.

If the Record Class is 10, then the ID in this ALDB/T record belongs to an INSTEON
Responder (Slave) Device. The device containing the ALDB/T is therefore an
INSTEON Controller (Master) of the Responder in the ALDB/T record.

Dev Guide, Chapter 7 Page 108

August 16, 2007 © 2005-2007 SmartLabs Technology

Similarly, if the Record Class is 11, then the ID in the ALDB/T record belongs to an
INSTEON Controller (Master) Device. The device containing this ALDB/T is therefore
an INSTEON Responder (Slave) to the Controller in the ALDB/T record.

(Another way to explain this is, within an ALDB/T, a Device Class of 10 means “I’m a
Controller,” and 11 means “I’m a Responder.”)

A Record Class of 01 indicates that the record contains information that may be
interpreted in different ways, depending on the application.

If both of the Record Class bits are zero, then this record is deleted, i.e. no longer in
use. In this discussion, deleted means the same as empty, unused, or available.
Deleted records are not removed from the ALDB/T. Instead, they are merely marked
as available for future use by setting the Record Class to 00.

The last physical record in the ALDB/T has a Record Control field with a high byte of
0x00 (last record in a thread), a Record Class of 00 (deleted), and an ID0 LSb of 1.
Records that are deleted but are not the last physical record will therefore have an
ID0 LSb set to zero.

An Empty ALDB/T
An empty ALDB/T starts out looking like this:

Empty ALDB/T

Addr + 0 Addr + 1 Addr
+ 2

Addr
+ 3

Addr
+ 4

Addr
+ 5

Addr
+ 6

Addr
+ 7

Record Control ID1 ID2 Group Data 1 ⇒ Data 3

Thread
Number

Record’s
Address

Link,
13 bits

Class,
2 bits

LSb,
1 bit

8 bits 8 bits 8 bits 24 bits

0 0xFFF8 0x0000 / 8 0b00 0b0 0xXX 0xXX 0xXX 0xXXXXXX

1 0xFFF0 0x0000 / 8 0b00 0b0 0xXX 0xXX 0xXX 0xXXXXXX

… … … … … … … … …

… … … … … … … … …

126 0xFFC8 0x0000 / 8 0b00 0b0 0xXX 0xXX 0xXX 0xXXXXXX

127 0xFFC0 0x0000 / 8 0b00 0b0 0xXX 0xXX 0xXX 0xXXXXXX

N/A 0xFFB8 0xXXXX / 8 0b00 0b1 0xXX 0xXX 0xXX 0xXXXXXX

In the table, the prefix 0x designates a hexadecimal number and 0b designates a
binary number. 0xX… means the hex digits don’t matter, and 0bB… means the
binary bits don’t matter. The notation 0xXXXX / 8 means just take the most
significant 13 bits (i.e. ignore the low 3 bits).

There are 128 threads in the ALDB/T, each containing one record. Each of those
records is marked empty (each Record Class is 00) and also designated the last
record in a thread (each Link high byte is 0x00). None of these records is the last
physical record in the ALDB/T because even though the Record Class is 00, the ID0
LSb is zero.

Note the additional record at address 0xFFB8. This record is also empty (its Record
Class is 00) but it is the last physical record in the ALDB/T (because it is empty with
an ID0 LSb of 1). To avoid having to search the entire ALDB/T for the last physical
record each time you need to add a new record, you should keep a variable,

Dev Guide, Chapter 7 Page 109

August 16, 2007 © 2005-2007 SmartLabs Technology

LastALDBRecordAddress, for saving the address of the last physical record. Thus, in
an empty ALDB/T, LastALDBRecordAddress would contain 0xFFB8.

Adding Records to an ALDB/T
To add a record to an ALDB/T, you first calculate the address of the first record in
the thread corresponding to ID0. (Remember, shift ID0 left by two into a 16-bit
value, complement the result, and then zero out the three low bits.)

Next, search that thread for an empty record. (Empty means the same as available,
unused, or deleted.) Starting at the address you calculated, look at the Record
Control field in the first two bytes at that address. If bits 2 and 1 (the Record Class)
are 00, then the record is empty. If the record is not empty, go to the next record in
the thread, which you will find at the Link address that you get by zeroing out the
three low bits of the Record Control field.

Follow the links until you find an empty record (Record Class 00) or until the high
byte of Link is 0x00, signifying the end of the thread. If you got to the end of the
thread without finding an empty record, you will have to create a new physical
record at the physical end of the ALDB/T.

Overwriting an Empty ALDB/T Record

If you found an empty record, you simply overwrite it with your new record data,
except for the Link portion (top 13 bits) of the Record Control field, which will remain
unchanged.

Put the low bit of the ID0 that you are storing into the ID0 LSb bit of the Record
Control field, then put ID1 and ID2 into the ID1 and ID2 fields of the record,
respectively. Change the Record Class bits of the Record Control field from 00 to
one of 11, 10, or 01, depending on the type of record you are storing. Put the ALL-
Link Group number in the Group field. Finally, set the Data 1, Data 2, and Data 3
fields appropriately for the Record Class you are storing.

Creating a New ALDB/T Record

To create a new record at the end of the ALDB/T, fetch the address saved in
LastALDBRecordAddress. Write that address into the Link portion (the top 13 bits) of
the Record Control field in the last record of the thread you just searched (the record
with a Link high byte of 0x00). Be careful not to alter the three low bits of that
Record Control field.

Now go to the new record at LastALDBRecordAddress. Set the high byte of the
Record Control field at that address to 0x00 to signify that this record is the new last
record in the thread. Set the remaining information in the record just as you would
if you were Overwriting an Empty ALDB/T Record109.

Finally, you must create a new, empty, last physical record. Subtract 8 from the
value in LastALDBRecordAddress, and store that new value in
LastALDBRecordAddress.

Set the Record Class bits in the Record Control field at that new address to 00 to
show that that the new record is empty, and set the ID0 LSb bit one to show that the
new empty record is also the last physical record in the ALDB/T. It does not matter
what the other bits in the record are, because they will be overwritten if the record
gets used.

Dev Guide, Chapter 7 Page 110

August 16, 2007 © 2005-2007 SmartLabs Technology

In most applications, memory is limited, so you should do bounds-checking to avoid
overwriting whatever is in lower memory as the ALDB/T grows downward.

Deleting Records from an ALDB/T
Deleting an existing record from an ALDB/T is simple—just set the Record Class (bits
2 and 1 of the Record Control field) to 00.

Of course, this method does not physically remove the record, so there will be gaps
in the ALDB/T. The gaps should not be a problem, though, because the next time
you add a record, it could go in any thread with equal probability, since the ID0 of
INSTEON devices is effectively random.

It is possible to write a defragmentation algorithm that would close up the gaps in
the ALDB/T threads, but it is far simpler just to have adequate memory available.

Searching an ALDB/T
If you are searching the ALDB/T for a record with a particular ID, use ID0 to
calculate the starting address for the thread containing the ID, and then follow the
links in the thread until ID1, ID2, and ID0 LSb match. (Remember, to find the first
record in the ID’s thread, shift ID0 left by two into a 16-bit value, complement the
result, and then zero out the three low bits. A Link is just the Record Control field
with the three low bits set to zero.) If you get to the end of the thread without
finding the ID, then the ID is not in the ALDB/T. The last record in a thread has a
Link high byte of 0x00.

If you are searching the database for something that may occur multiple times, such
as all records with a given ALL-Link Group Number and/or all records in a given
Record Class, then you will have to look at all 128 threads. As you increment
through the threads, keep a ThreadIndex counter running from 0x00 to 0x7F. To
recover ID0 of the Device ID in a given record, multiply ThreadIndex by 2 and add in
the ID0 LSb bit.

Dev Guide, Chapter 7 Page 111

August 16, 2007 © 2005-2007 SmartLabs Technology

ALDB Performance Comparison
For this comparison, we assume that the ALDB is stored in external serial EEPROM,
and that a serial EEPROM transaction takes 25 μs (microseconds). Reading a serial
EEPROM requires four overhead transactions, plus one transaction per byte read.
The overhead transactions are:

1. Tell the EEPROM you are writing an address.

2. Write the address high byte

3. Write the address low byte.

4. Put the EEPROM into read mode.

You can then read bytes sequentially, with the EEPROM automatically incrementing
the read address after each byte that you read.

Let’s assume that we want to perform the most common search, which is for a
match to a given 3-byte INSTEON ID and 1-byte ALL-Link Group number. In an
ALDB/L, we will have to read from 2 to 5 bytes—the Record Control byte and the
Group, and possibly three of the ID bytes—before discovering a mismatch. In an
ALDB/T, we will also have to read from 2 to 5 bytes—in this case the 2-byte Record
Control field, then possibly ID1, ID2, and the Group bytes—before discovering a
mismatch.

Taking the average to be four bytes for either type of ALDB, and adding in the four
overhead transactions, it takes an average of 200 μs to search a record and
eliminate it as a match.

How much time we have available to perform a search depends on how incoming
INSTEON messages are buffered. Worst case, if there is only a single buffer, a
received message can be overwritten by new INSTEON traffic as it occurs. In that
case, we have only 14 milliseconds (ms) to perform the search. 14 ms is the time
between the completion of Standard-length message reception and the possible
arrival of a new message (which could be an acknowledgement of the message just
received). If there is a double buffer, then we can process a received Standard-
length message during the entire time that a new message is coming in. With
double buffering, we have 50 ms to perform the search.

At 200 μs per record, we can search 70 records in an ALDB/L in 14 ms, or 250
records in 50 ms. In an ALDB/T, we can search 128 times as many records in the
same time, because we immediately know which one of the 128 threads to look in.
Thus, with the ALDB/T we effectively search 8,960 records in 14 ms, or 32,000
records in 50 ms. The table below summarizes this result.

Average ALDB Records Searchable

ALDB
Type

Single Buffer
(14 ms)

Double Buffer
(50 ms)

ALDB/L 70 250

ALDB/T 8,960 32,000

Dev Guide, Chapter 7 Page 112

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Security
INSTEON network security is maintained at two levels. ALL-Linking Control112
ensures that users cannot create ALL-Links that would allow them to control their
neighbors’ INSTEON devices, even though those devices may be repeating each
other’s messages. Encryption within Extended-length Messages113 permits
completely secure communications for applications that require it.

ALL-Linking Control
INSTEON enforces ALL-Linking Control by requiring that users have Physical
Possession of Devices112 in order to create ALL-Links, and by Masking Non-linked
Network Traffic112 when messages are relayed outside the INSTEON network itself.

Physical Possession of Devices
Firmware in INSTEON devices prohibits them from identifying themselves to other
devices unless a user physically presses a button on the device. That is why the
Command in the network identification Broadcast message is called SET Button
Pressed. As shown above in the section Example of an INSTEON ALL-Linking
Session97, a user has to push buttons on both the Controller device and the
Responder device in order to establish an ALL-Link between them. A Responder will
not act on Commands from an unlinked Controller.

ALL-Linking by sending INSTEON messages requires knowledge of the 3-byte
addresses of INSTEON devices. These addresses, unique for each device, are
assigned at the factory and displayed on printed labels attached to the device. Users
who have physical possession of a device can read the device address from the label
and manually enter it when prompted by a computer program.

Masking Non-linked Network Traffic
As described in the section Interfacing to an INSTEON Network28, above, there can
be many kinds of INSTEON devices, called Bridges, that connect an INSTEON
network to the outside world. But since an INSTEON Bridge is itself just another
INSTEON device, it must be ALL-Linked to other devices on the INSTEON network in
order to exchange messages with them. A user must establish these ALL-Links in
the same way as for any other INSTEON device—by pushing buttons or by typing in
addresses.

SmartLabs’ PowerLinc™ Controller (PLC) is an example of an INSTEON-certified
Bridge device that monitors INSTEON traffic and relays it to a computer via a serial
link. For security, the PLC’s firmware masks the all but the two low-bytes of the
From Address and To Address fields of INSTEON messages unless the traffic is from
an INSTEON device already ALL-Linked to the PLC, or the traffic is from a device that
already knows the address of the PLC. In this way, software can take into account
the existence of INSTEON traffic without users being able to discover the addresses
of devices that they never had physical access to.

To avoid ‘spoofing,’ where an attacker poses as someone else (by causing the PLC to
send messages with bogus From Addresses), the PLC’s firmware always inserts the
true PLC ID number in the From Address field of messages that it sends.

Dev Guide, Chapter 7 Page 113

August 16, 2007 © 2005-2007 SmartLabs Technology

Encryption within Extended-length
Messages

For applications such as door locks and security systems, INSTEON Extended-length
messages can contain encrypted payloads. Possible encryption methods include
rolling-code, managed-key, and public-key algorithms. In keeping with INSTEON’s
hallmark of simplicity, rolling-code encryption, as used by garage door openers and
radio keyfobs for cars, is the method preferred by SmartLabs. The encryption
method that will be certified as the INSTEON standard is currently under
development.

Dev Guide, Chapter 8 Page 114

August 16, 2007 © 2005-2007 SmartLabs Technology

Chapter 8 — INSTEON Command Set

All INSTEON messages, whether Standard-length or Extended-length, contain two
one-byte fields called Command 1 and Command 2 in the eighth and ninth byte
positions respectively, as shown below.

Both fields may be used together to contain a single two-byte Command in the case
of SB Broadcast or SD or ED Direct messages. In the case of SA ALL-Link Broadcast
or SC ALL-Link Cleanup messages, however, only the Command 1 field is available
because the ALL-Link Group Number occupies the Command 2 field within SC ALL-
Link Cleanup messages. (In SA ALL-Link Broadcast messages the ALL-Link Group
Number appears as the low byte in the To Address field, and the Command 2 field is
set to 0x00.)

In This Chapter

INSTEON Command Categories115
Gives a two-letter system for designating the INSTEON message type that an
INSTEON Command appears in, and describes the different kinds of INSTEON
Commands.

INSTEON Command Set Tables124
Reprints all of the INSTEON Commands current as of the publication date of this
Developer’s Guide.

Required INSTEON Commands157
Groups all of the INSTEON Commands required for INSTEON conformance into
one table, current as of the publication date of this Developer’s Guide.

INSTEON Command Number Assignment161
Describes how to create new INSTEON Commands.

INSTEON Command Database (ICDB)161
Describes the database of INSTEON Commands currently under development.

About INSTEON Peek and Poke Commands162
Gives details and examples of how Peek and Poke Commands have been used in
the past.

To
Address

Message
Flags

CRC
Code

Command 2

From
Address

Command 1

To
Address

Message
Flags

14 Bytes
of Data

Command 2

From
Address

Command 1

CRC
Code

Standard-length INSTEON Message

Extended-length INSTEON Message

Dev Guide, Chapter 8 Page 115

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Command Categories
INSTEON Command Numbers may be interpreted six different ways, depending on
the type of INSTEON message in which they appear. The following table shows the
six possibilities, although the two in the darkened rows are not currently used.

Command
Type

Command
Designator

Valid for These
Message Types

Message
Length

Command
Bytes

SD SD Standard 2 Direct
Commands

ED ED Extended 16

SA SA, SC Standard 1 ALL-Link
Commands

EA EA, EC Extended 15

SB SB Standard 1 Broadcast
Commands

EB EB Extended 16

The Command Designator and Valid for These Message Types columns use the same
abbreviations as first introduced in the INSTEON Message Summary Table46 above.
The first letter is the message length, either S for Standard-length or E for
Extended-length. The second letter is D for Direct, A for ALL-Link Broadcast, C for
ALL-Link Cleanup, or B for Broadcast. The text below and the tables of Commands
all use these same Command Designators.

SD and ED Direct Commands appear in SD and ED Direct Messages, respectively.
SA ALL-Link Commands appear in both SA ALL-Link Broadcast and SC ALL-Link
Cleanup Messages. SB Broadcast Commands appear in SB Broadcast Messages.

Dev Guide, Chapter 8 Page 116

August 16, 2007 © 2005-2007 SmartLabs Technology

ALL-Link Commands
ALL-Linking allows any INSTEON Controller device to operate any INSTEON
Responder device, even if the Controller does not know any of the Direct Commands
that the Responder can execute. The principle is simple—during ALL-Linking to a
button on a Controller, a Responder memorizes the state that it is in at the time.
After ALL-Linking, pushing that button on the Controller causes the Responder to go
back into the state that it memorized when it ALL-Linked.

During INSTEON Device ALL-Linking93, when a button on a Controller ALL-Links to a
Responder, the Controller creates an ALL-Link Group, which the Responder joins (see
INSTEON ALL-Link Groups93, below). Multiple Responders can join the same ALL-
Link Group, so it is possible for a single button push to cause an entire ensemble of
devices to recall their memorized states. All of the Responder devices in the ALL-
Link Group will recall their memorized states simultaneously, because when the
Controller’s button is pushed, the Controller first sends out an SA ALL-Link Broadcast
message to all of the Group members at once, followed by individual SC ALL-Link
Cleanup messages to each Group member in turn, as described in the sections SA
ALL-Link Broadcast Messages48 and SC ALL-Link Cleanup Messages48 above.

Note that although EA and EC Extended-length ALL-Link Broadcast and ALL-Link
Cleanup Commands are logically possible, INSTEON does not currently use them.

Universally-Required ALL-Link Command
A basic requirement for INSTEON conformance is ALL-Link support.

All INSTEON devices must implement an ALL-Link Recall SA Command, no matter
what DevCat the device belongs to, in order to support ALL-Linking. In the INSTEON
Command Set Tables124, universally-required Commands are listed in bold type and
color-coded yellow.

The required ALL-Link Recall Command is reprinted in this document in the section
Required Commands for All INSTEON Devices157 below.

ALL-Link Alias Commands
The only required ALL-Link Command is ALL-Link Recall, but there are several
additional ALL-Link Commands, called ALL-Link Alias Commands, that Responders
may optionally execute.

When a Responder receives one of the ALL-Link Alias Commands in an ALL-Link
Broadcast message, it checks to see if it has previously stored a substitute Direct
Command to execute in place of the ALL-Link Alias Command. If the Responder
does find a substitute Direct Command, then it executes the substitute Command
just as it would if it had received the Direct Command within an INSTEON Direct
message. The substitute Direct Command may be Standard-length or Extended-
length (SD or ED). Because a Direct Command of 0x0000 will never be defined, a
substitute Direct Command of 0x0000 means ‘do nothing.’

The substitute Direct Command may be pre-programmed into the Responder as a
default. Defaults may be altered over the INSTEON network via Set ALL-Link
Command Alias Commands, or by the use of an appropriate user interface.

Lighting control devices have pre-programmed default substitute SD Commands as
shown in the table below. Lighting control devices are those with DevCats of 0x01
(Dimmable Lighting Control), or 0x02 (Switched Lighting Control).

Dev Guide, Chapter 8 Page 117

August 16, 2007 © 2005-2007 SmartLabs Technology

ALL-Link Command Default Substitute SD Commands for Lighting
Controls

HIGH State LOW State HIGH State LOW State

ALL-Link Recall ALL-Link Alias 1 Low N/A Light OFF

ALL-Link Alias 2 High ALL-Link Alias 2 Low Light ON Fast Light OFF Fast

ALL-Link Alias 3 High ALL-Link Alias 3 Low Light Brighten One Step Light Dim One Step

ALL-Link Alias 4 High ALL-Link Alias 4 Low Light Start Manual
Change

Light Stop Manual
Change

Note that the ALL-Link Recall Command never has a substitute Direct Command,
because ALL-Link Recall is the basic required Command to support ALL-Linking. In
the case of lighting controls, the effect will be the same as executing a Light ON SD
Command, because an ALL-Linked light will go to a saved On-level at a saved Ramp
Rate.

Dev Guide, Chapter 8 Page 118

August 16, 2007 © 2005-2007 SmartLabs Technology

Direct Commands
INSTEON SD (Standard-length Direct) Commands consist of two bytes, Command 1
and Command 2. INSTEON ED (Extended-length Direct) Commands consist of the
same Command 1 and Command 2 bytes plus fourteen additional bytes, D1 through
D14.

The interpretation of any given Direct Command Number depends on the DevCat
(Device Category) that the Direct Command is associated with. See Using DevCats
to Qualify INSTEON Commands86 above for more information.

Two-byte SD Commands are the payload within Standard-length INSTEON
messages. SD Commands are intended for frequent use, fast response, or both. ED
Commands, which require Extended-length INSTEON messages to transport, can be
more elaborate but they take more time to transmit.

Required Direct Commands
Although the SD and ED INSTEON Command Set Tables124 list a large (and growing)
number of Direct Commands, only a small subset of them will typically be required
for a given INSTEON device, as explained below.

Universally-Required Direct Commands
All INSTEON devices must implement a small number of Direct Commands, no
matter what DevCat the device belongs to, in order to support ALL-Linking and
fetching product data. In the INSTEON Command Set Tables124, universally-required
Commands are listed in bold type and color-coded yellow.

Universally-required Direct Commands are reprinted in this document in the section
Required Commands for All INSTEON Devices157 below.

Conditionally-Required Direct Commands
Some Direct Commands are required only under certain conditions. For example,
products that utilize User-Defined FX Commands121 must support FX Username
Request and FX Username Response Commands. In the INSTEON Command Set
Tables124, conditionally-required Commands are also listed in bold type and color-
coded yellow, except that the condition for requirement is given in red type.

Conditionally-required Direct Commands are reprinted in this document in the
section Required Commands for Some INSTEON Devices160 below.

Required Direct Commands within a DevCat
Within a DevCat, a small set of Direct Commands may be required in order to
guarantee basic functionality within the DevCat. For example, all lighting controls
must support Light On and Light Off, and dimmable lighting controls must also
support Light Brighten and Light Dim. Required Direct Commands within a DevCat
are given in the INSTEON Command Set Tables124 in underline type.

Dev Guide, Chapter 8 Page 119

August 16, 2007 © 2005-2007 SmartLabs Technology

Returned Data Following a Direct Command
All SD and ED Commands from a sender to an addressee are followed by a
Standard-length acknowledgement message from the addressee back to the sender
(see SD ACK and SD NAK Messages47 above). The acknowledgement message
serves as a confirmation that the addressee received the outgoing SD or ED
message without error. Normally, the addressee simply echoes the received
Command 1 and Command 2 fields in the ACK message. However, some SD or ED
Commands specifically request one or two bytes of returned data, which may be
contained in the acknowledgement message. (For completeness, note that SC ALL-
Link Cleanup messages also receive acknowledgements.)

Returning a NAK
When a Responder receives a Direct Command from a Controller, and the Responder
cannot execute the Command because the Command is not in its repertoire, then the
Responder may return a Direct NAK message instead of a Direct ACK message to the
Controller by altering the message flag bits.

NAK Error Codes

If the recipient of an SD or ED Direct or SC ALL-Link Cleanup message responds to
the message originator with a NAK, the SD or SC NAK message will contain the
reason for the NAK in the Command 2 field (see INSTEON Message Summary
Table46). These are the NAK Error codes:

NAK Code Error

0x00 ⇒
0xFC

Reserved

0xFD Unknown INSTEON Command

0xFE No load detected

0xFF Not in ALL-Link Group

Returning an ACK
When a Responder receives an SD or ED Direct message or an SC ALL-Link Cleanup
message from a Controller, and validates that the received message is error-free,
then the Responder’s INSTEON Engine automatically returns an SD or SC ACK
message to the Controller (see SD ACK and SD NAK Messages47 and SC ACK and SC
NAK Messages48, above). Normally, the Command 1 and Command 2 fields of the
ACK message simply echo the Command 1 and Command 2 fields of the received
message. However, if the received Command is one that requests just one or two
bytes of returned data, an application may return the data in those fields. Only
selected SD and ED Direct Commands expect returned data, and that data is
normally one byte in the Command 2 field.

Because ACK messages are part of a timed INSTEON message cycle, an application
only has a limited amount of time to insert the returned bytes in the ACK message.
Worst case (when the message is received on the last hop), that time is 15
milliseconds.

Dev Guide, Chapter 8 Page 120

August 16, 2007 © 2005-2007 SmartLabs Technology

Returning Data Using Request/Response Commands
When more than one or two bytes of data must be returned, the data may be
contained in an Extended-length message. The SD and ED Direct INSTEON
Command Set Tables124 contain several request/response pairs, where the request is
an SD or ED Command, and the response is an ED Command. Because the
response is an independent, asynchronous message, and not part of a timed cycle,
applications have more time to compose the response. However, applications that
request a response should set a timer and not block further processing after a
timeout in case there is no response for whatever reason.

Dev Guide, Chapter 8 Page 121

August 16, 2007 © 2005-2007 SmartLabs Technology

User-Defined FX Commands
INSTEON supports user-defined Direct Commands known as FX Commands, so
named because the Command 1 field ranges from 0xF0 to 0xFF (and because these
Commands may create special effects).

Matching FX Usernames
In order to use FX Commands, both the Controller and Responder devices must be
pre-programmed with an 8-byte FX Username in nonvolatile read-only memory, and
both FX Usernames must match before a Controller may send an FX Command to a
Responder. The Controller’s application program has the responsibility to check that
the FX Username in the Controller matches the FX Username in any Responder
devices before it sends FX Commands to them.

A Controller may check for an FX Username match just after ALL-Linking to a
Responder, or it may check at any other time as needed. To check an INSTEON
device’s FX Username, another device may send it an FX Username Request SD
Command. The queried device will respond with an FX Username Response ED
Command. The first eight data bytes, D1 through D8, in the FX Username Response
Command contains the FX Username. The remaining six data bytes, D9 through
D14, may be user-defined.

To ensure that all 8-byte FX Usernames are unique, SmartLabs maintains an FX
Username database. Manufacturers who wish to use FX Commands need to submit
their desired FX Usernames to Smartlabs for approval before building devices that
use them.

All INSTEON devices that utilize FX Commands must implement the ED FX Username
Response Command. Controller devices that can send FX Commands must also
implement the SD FX Username Request Command. Devices that do not utilize FX
Commands should respond to an FX Username Request Command with an SD NAK.
Legacy devices, however, may respond with an SD ACK and then fail to send the ED
FX Username Response message.

FX Command Definitions
The value from 0xF0 through 0xFF in the Command 1 field of SD or ED messages
may be interpreted in whatever way the device designer desires. The Command 2
field, ranging from 0x00 to 0xFF, may be freely defined, and in the case of ED
messages, the fourteen bytes D1 through D14 are also user-defined.

SmartLabs encourages manufacturers who utilize FX Commands to disclose them so
that they may be published in a SmartLabs-maintained database. Popular FX
Commands are candidates for standardized Direct Commands defined within a
DevCat.

Dev Guide, Chapter 8 Page 122

August 16, 2007 © 2005-2007 SmartLabs Technology

Data Transfer Commands
It is possible to implement Direct Commands that directly read and write memory in
an INSTEON device. Commands that write to memory can be destructive if not used
with extreme caution. A better (object oriented) method is to define new Commands
that read or write device properties by name, without regard to where the data is
located in memory.

A legacy mechanism for peeking and poking single bytes using SD Commands is
given in the SD Command table, highlighted in blue. These Commands are
deprecated, meaning that they should not be implemented in the future. An
explanation and examples of how these Commands have been used in the past are
given below in the section About INSTEON Peek and Poke Commands162.

A more advanced mechanism for performing block data transfers using ED
Commands with a Command 1 field of 0x2A is given in the ED Command table, also
highlighted in blue. These Commands, if implemented, should not be used directly
because of their dependence on specific memory addresses. Instead, named data
transfers may be defined using a modified Request Block Data Transfer Command
with a Command 2 byte within the range 0x0E to 0xFE. Manufacturers who wish to
implement block data transfers should contact SmartLabs Technology for assistance.

Data transfer Commands are not required for INSTEON conformance. To determine
if a given INSTEON device supports data transfer, try reading known data. If the
device has implemented the Command, then it will return the expected data.

Dev Guide, Chapter 8 Page 123

August 16, 2007 © 2005-2007 SmartLabs Technology

Broadcast Commands
By definition, INSTEON SB Broadcast Commands are addressed to all INSTEON
devices. Accordingly, the To Address field may contain three bytes of data that
pertain to the particular SB Broadcast Command. SB Broadcast Commands are not
acknowledged.

Note that the SB Broadcast Commands described in this section are not the same as
SA ALL-Link Broadcast Commands, which are first broadcast and then sent
sequentially as SC ALL-Link Cleanup messages. See the sections SB Messages47, SA
ALL-Link Broadcast Messages48, and SC ALL-Link Cleanup Messages48 above for
clarification.

Note that although EB Extended-length Broadcast Commands are logically possible,
INSTEON does not currently use them.

Required Broadcast Commands
The INSTEON Command Set Tables124 list only a few required Broadcast Commands.

Universally-Required Broadcast Commands
All INSTEON devices are required to implement a small number of Broadcast
Commands, no matter what DevCat the device belongs to, in order to support ALL-
Linking. See the section SET Button Pressed Broadcast Messages84 above for more
information. In the INSTEON Command Set Tables124, universally-required
Commands are listed in bold type and color-coded yellow.

Universally-required Broadcast Commands are reprinted in this document in the
section Required Commands for All INSTEON Devices157 below.

Conditionally-Required Broadcast Commands
Some Broadcast Commands are required only under certain conditions. For
example, SALad-enabled products must support a SALad Debug Report Command.
In the INSTEON Command Set Tables124, conditionally-required Commands are also
listed in bold type and color-coded yellow, except that the condition for requirement
is given in red type.

Conditionally-required Broadcast Commands are reprinted in this document in the
section Required Commands for Some INSTEON Devices160 below.

Dev Guide, Chapter 8 Page 124

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Command Set Tables
The following six tables show all of the INSTEON Commands defined as of the
publication date of this Developer’s Guide. Although reprinted here for convenience,
the official table is contained in the INSTEON Command Tables Document9 described
in the Other Documents Included by Reference9 section above. INSTEON Command
Tables 20070816a.doc is the source for the tables reprinted below.

The tables in the following six sections contain:

• SD, Standard-length Direct Commands

• ED, Extended-length Direct Commands

• SA, Standard-length ALL-Link Commands

• EA, Extended-length ALL-Link Commands

• SB, Standard-length Broadcast Commands

• EB, Extended-length Broadcast Commands

The tables utilize Note Keys, text conventions, and color-codes to designate the
following conditions:

Note Key Text Sample Description

Req-All Enter Linking Mode Required Commands for INSTEON conformance
Req-Ex (Required after 2/1/07) Required Commands with exceptions
Req-DC Light ON Required Commands for specific DevCats
- Light ON Fast Optional Commands
DataTr Peek One Byte Data Transfer Commands
FX FX Commands FX Commands
- Reserved Reserved for future use, currently unassigned
Dupl 0x45 Duplicated command number definitions for different DevCats
Prop 0x2F Proposed command does not yet have final approval
NClar Get Temperature Needs further clarification
Depr Deprecated Deprecated command—do not use in the future

Dev Guide, Chapter 8 Page 125

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Direct Commands
This section lists SD Standard-length and ED Extended-length INSTEON Direct
Commands in two separate tables.

INSTEON Standard-length Direct Commands
The table below lists the existing INSTEON SD Standard-length Direct Commands.

The Note Key Req-All denotes INSTEON commands that must be supported by
INSTEON devices in all Device Categories. Req-All command names appear in bold
type.

The Note Key Req-Ex (…) denotes INSTEON commands that must be supported by
INSTEON devices in all Device Categories except as noted within the parentheses.
Req-Ex command names appear in bold type.

The Note Key Req-DC denotes INSTEON commands that must be supported only by
those INSTEON devices in the Device Categories given in the DevCat and SubCat
columns. Req-DC command names appear in underlined type.

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Reserved 0x00 0x00 Must be undefined in all INSTEON devices
because this is the default command to
execute using ED 0x0304 Set ALL-Link
Command Alias

Reserved 0x00 0x01⇒ 0xFF
Assign to ALL-Link
Group

All All 0x01 0x00 ⇒ 0xFF Group Number Req-All
Used during INSTEON device linking
session.

Delete from ALL-
Link Group

All All 0x02 0x00 ⇒ 0xFF Group Number Req-All
Used during unlinking session.

Product Data
Request

All All 0x03 0x00 Req-All, Req-Ex (Required after 2/1/07)
Addressee responds with an ED 0x0300
Product Data Response message

FX Username
Request

All All 0x03 0x01 Req-Ex (Only required for devices that
support FX Commands) , FX
Addressee responds with an ED 0x0301
FX Username Response message

Device Text String
Request

All All 0x03 0x02 Addressee responds with an ED 0x0302
Device Text String Response message

Reserved 0x03 0x03 ⇒ 0xFF
Reserved 0x04

⇒
0x08

Enter Linking Mode All All 0x09 0x00 ⇒ 0xFF Group Number Req-All
Same as holding down SET Button for 10
seconds
NOTE: Not supported by i1 devices

Enter Unlinking
Mode

All All 0x0A 0x00 ⇒ 0xFF Group Number Req-All
NOTE: Not supported by i1 devices

Reserved 0x0B
⇒
0x0C

Dev Guide, Chapter 8 Page 126

August 16, 2007 © 2005-2007 SmartLabs Technology

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Get INSTEON Engine
Version

All All 0x0D 0x00 Req-All
Returned ACK message will contain the
INSTEON Engine Version in Command 2.
0x00 = i1 (default echo for legacy devices)
0x01 = i2

Reserved 0x0D 0x01 ⇒ 0xFF Do not use so that legacy devices will echo
0x00 in Command 2

Reserved 0x0E
Ping All All 0x0F 0x00

(0x01 ⇒ 0xFF Not Parsed in
legacy devices. Use only 0x00
in the future.)

Req-All
Addressee returns an ACK message but
performs no operation.

ID Request All All 0x10 0x00
(0x01 ⇒ 0xFF Not Parsed in
legacy devices. Use only 0x00
in the future.)

Req-All
Addressee first returns an ACK message,
then it sends an SB 0x01 SET Button
Pressed Responder or SB 0x02 SET
Button Pressed Controller Broadcast
message, but it does not enter Linking
Mode.

Light ON 0x01 All 0x11 0x00 ⇒ 0xFF On-Level Req-DC
Go to On-Level at saved Ramp Rate

Light ON 0x02 All 0x11 0x00 ⇒ 0xFF Not Parsed Req-DC
Switch to full on

Light ON Fast 0x01 All 0x12 0x00 ⇒ 0xFF On-Level Go to saved On-Level instantly
Light ON Fast 0x02 All 0x12 0x00 ⇒ 0xFF Not Parsed Switch to full on
Light OFF 0x01 All 0x13 0x00 ⇒ 0xFF Not Parsed Req-DC

Go to full off at saved Ramp Rate
Light OFF 0x02 All 0x13 0x00 ⇒ 0xFF Not Parsed Req-DC

Switch to full off
Light OFF Fast 0x01 All 0x14 0x00 ⇒ 0xFF Not Parsed Go to full off instantly
Light OFF Fast 0x02 All 0x14 0x00 ⇒ 0xFF Not Parsed Switch to full off
Light Brighten One
Step

0x01 All 0x15 0x00 ⇒ 0xFF Not Parsed Req-DC
Brighten one step. There are 32 steps from
off to full brightness.

Light Dim One Step 0x01 All 0x16 0x00 ⇒ 0xFF Not Parsed Req-DC
Dim one step. There are 32 steps from off
to full brightness.

Direction
0x00 Down
0x01 Up

Light Start Manual
Change

0x01 All 0x17

0x02
⇒
0xFF

Unused

Begin changing On-Level.

Light Stop Manual
Change

0x01 All 0x18 0x00 ⇒ 0xFF Not Parsed Stop changing On-Level.

0x00 Returned ACK message will contain the
On-Level in Command 2.
Command 1 will contain an ALL-Link
Database Delta number that increments
every time there is a change in the
addressee’s ALL-Link Database.

Light Status Request

(SmartLabs 2486D
KeypadLinc Dimmer,
SmartLabs 2886D
Icon In-Wall
Controller)

0x01 0x09
0x0A

0x19

0x01 Returned ACK message will contain the
LED Bit Flags in Command 2.
Command 1 will contain an ALL-Link
Database Delta number that increments
every time there is a change in the
addressee’s ALL-Link Database.

Dev Guide, Chapter 8 Page 127

August 16, 2007 © 2005-2007 SmartLabs Technology

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Light Status Request 0x01 All
But

0x09
0x0A

0x19 0x00 ⇒ 0xFF Not Parsed Returned ACK message will contain the
On-Level in Command 2.
Command 1 will contain an ALL-Link
Database Delta number that increments
every time there is a change in the
addressee’s ALL-Link Database.

0x00 Returned ACK message will contain the
On-Level (0x00 or 0xFF only) in Command
2.
Command 1 will contain an ALL-Link
Database Delta number that increments
every time there is a change in the
addressee’s ALL-Link Database.

Light Status Request

(SmartLabs 2486S
KeypadLinc Relay)

0x02 0x0F 0x19

0x01 Returned ACK message will contain the
LED Bit Flags in Command 2.
Command 1 will contain an ALL-Link
Database Delta number that increments
every time there is a change in the
addressee’s ALL-Link Database.

Light Status Request 0x02 All
But

0x0F

0x19 0x00 ⇒ 0xFF Not Parsed Returned ACK message will contain the
On-Level (0x00 or 0xFF only) in Command
2.
Command 1 will contain an ALL-Link
Database Delta number that increments
every time there is a change in the
addressee’s ALL-Link Database.

Reserved 0x1A
⇒
0x1E

Flags Requested
0 = Program Lock
Off

Bit 0

1 = Program Lock
On
0 = LED Off Bit 1
1 = LED On
0 = Beeper Off Bit 2
1 = Beeper On

0x00

Bit 3-7 = Unused
0x01 ALL-Link Database

Delta number

Get Operating Flags

(SmartLabs 2430
ControLinc and 2830
Icon Tabletop
Controller)

0x00 0x04
0x06

0x1F

0x02
⇒
0xFF

Unused

Returned ACK message will contain the
requested data in Command 2.

Flags Requested
0 = Program Lock
Off

Bit 0

1 = Program Lock
On
0 = LED Off Bit 1
1 = LED On
0 = Beeper Off Bit 2
1 = Beeper On
0 = Allow Sleep Bit 3
1 = Stay Awake
0 = Allow TransmitBit 4
1 = Receive Only
0 = Allow
Heartbeat

Get Operating Flags

(SmartLabs 2843
RemoteLinc)

0x00 0x05 0x1F
0x00

Bit 5

1 = No Heartbeat

Returned ACK message will contain the
requested data in Command 2.

Dev Guide, Chapter 8 Page 128

August 16, 2007 © 2005-2007 SmartLabs Technology

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Bit 6-7 = Unused
0x01 ALL-Link Database

Delta number
0x02
⇒
0xFF

Unused

Flags Requested
0 = Program Lock
Off

Bit 0

1 = Program Lock
On
0 = LED Off Bit 1
1 = LED On
During Transmit
0 = Resume Dim
Disabled

Bit 2

1 = Resume Dim
Enabled
0 = 6 Keys Bit 3
1 = 8 Keys
0 = Backlight Off Bit 4
1 = Backlight On
0 = Key Beep Off Bit 5
1 = Key Beep On

0x00

Bit 6-7 = Unused
0x01 ALL-Link Database

Delta number

Get Operating Flags

(SmartLabs 2486D
KeypadLinc Dimmer,
SmartLabs 2886D
Icon In-Wall
Controller)

0x01 0x09
0x0A

0x1F

0x02
⇒
0xFF

Unused

Returned ACK message will contain the
requested data in Command 2.

Flags Requested
0 = Program Lock
Off

Bit 0

1 = Program Lock
On
0 = LED Off Bit 1
1 = LED On
During Transmit
0 = Resume Dim
Disabled

Bit 2

1 = Resume Dim
Enabled

Bit 3 = Unused
0 = LED Off Bit 4
1 = LED On
0 = Load Sense
Off

Bit 5

1 = Load Sense
On

0x00

Bit 6-7 = Unused
0x01 ALL-Link Database

Delta number
0x02 Signal-to-Noise Value

Get Operating Flags 0x01 All
But

0x09
0x0A

0x1F

0x03
⇒
0xFF

Unused

Returned ACK message will contain the
requested data in Command 2.

Get Operating Flags 0x02 0x0F 0x1F Flags Requested Returned ACK message will contain the

Dev Guide, Chapter 8 Page 129

August 16, 2007 © 2005-2007 SmartLabs Technology

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

0 = Program Lock
Off

Bit 0

1 = Program Lock
On
0 = LED Off Bit 1
1 = LED On
During Transmit
0 = Resume Dim
Disabled

Bit 2

1 = Resume Dim
Enabled
0 = 6 Keys Bit 3
1 = 8 Keys
0 = Backlight Off Bit 4
1 = Backlight On
0 = Key Beep Off Bit 5
1 = Key Beep On

0x00

Bit 6-7 = Unused
0x01 ALL-Link Database

Delta number
0x02 Signal-to-Noise Value

(SmartLabs 2486S
KeypadLinc Relay)

0x03
⇒
0xFF

Unused

requested data in Command 2.

Flags Requested
0 = Program Lock
Off

Bit 0

1 = Program Lock
On
0 = LED Off Bit 1
1 = LED On
During Transmit
0 = Resume Dim
Disabled

Bit 2

1 = Resume Dim
Enabled

Bit 3 = Unused
0 = LED Off Bit 4
1 = LED On
0 = Load Sense
Off

Bit 5

1 = Load Sense
On

0x00

Bit 6-7 = Unused
0x01 ALL-Link Database

Delta number

Get Operating Flags 0x02 All
But

0x0F

0x1F

0x02
⇒
0xFF

Unused

Returned ACK message will contain the
requested data in Command 2.

Flag to Alter
0x00 Program Lock On
0x01 Program Lock Off
0x02 LED On
0x03 LED Off
0x04 Beeper On

Set Operating Flags

(SmartLabs 2430
ControLinc and 2830
Icon Tabletop
Controller)

0x00 0x04
0x06

0x20

0x05 Beeper Off

Defaults given in bold.

Dev Guide, Chapter 8 Page 130

August 16, 2007 © 2005-2007 SmartLabs Technology

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

0x06
⇒
0xFF

Unused

Flag to Alter
0x00 Program Lock On
0x01 Program Lock Off
0x02 LED On
0x03 LED Off
0x04 Beeper On
0x05 Beeper Off
0x06 Stay Awake On
0x07 Stay Awake Off
0x08 Listen Only On
0x09 Listen Only Off
0x0A No I’m Alive On
0x0B No I’m Alive Off

Set Operating Flags

(SmartLabs 2843
RemoteLinc)

0x00 0x05 0x20

0x0C
⇒
0xFF

Unused

Defaults given in bold.

Flag to Alter
0x00 Program Lock On
0x01 Program Lock Off
0x02 LED On during TX
0x03 LED Off during TX
0x04 Resume Dim On
0x05 Resume Dim Off
0x06 8-Key KeypadLinc
0x07 6-Key KeypadLinc
0x08 LED Backlight Off
0x09 LED Backlight On
0x0A Key Beep On
0x0B Key Beep Off

Set Operating Flags

(SmartLabs 2486D
KeypadLinc Dimmer,
SmartLabs 2886D
Icon In-Wall
Controller)

0x01 0x09
0x0A

0x20

0x0C
⇒
0xFF

Unused

Defaults given in bold.

Flag to Alter
0x00 Program Lock On
0x01 Program Lock Off
0x02 LED On during TX

Default for SubCat 0x00
(SmartLabs LampLinc
V2 Dimmer 2456D3)

0x03 LED Off during TX
Default for SubCat 0x01
(SmartLabs SwitchLinc
V2 Dimmer 2476D)

0x04 Resume Dim On
0x05 Resume Dim Off
0x06 Load Sense On
0x07 Load Sense Off
0x08 LED Off
0x09 LED On

Set Operating Flags 0x01 All
But

0x09
0x0A

0x20

0x0A
⇒
0xFF

Unused

Defaults given in bold.

Flag to Alter Set Operating Flags

0x02 0x0F 0x20
0x00 Program Lock On

Defaults given in bold.

Dev Guide, Chapter 8 Page 131

August 16, 2007 © 2005-2007 SmartLabs Technology

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

0x01 Program Lock Off
0x02 LED On during TX
0x03 LED Off during TX
0x04 Resume Dim On
0x05 Resume Dim Off
0x06 8-Key KeypadLinc
0x07 6-Key KeypadLinc
0x08 LED Backlight Off
0x09 LED Backlight On
0x0A Key Beep On
0x0B Key Beep Off

(SmartLabs 2486S
KeypadLinc Relay)

0x0C
⇒
0xFF

Unused

Flag to Alter
0x00 Program Lock On
0x01 Program Lock Off
0x02 LED On during TX

Default for SubCat 0x09
(SmartLabs
ApplianceLinc 2456S3)

0x03 LED Off during TX
Default for SubCat 0x0A
(SmartLabs SwitchLinc
Relay 2476S)

0x04 Resume Dim On
0x05 Resume Dim Off
0x06 Load Sense On
0x07 Load Sense Off
0x08 LED Off
0x09 LED On

Set Operating Flags 0x02 All
But

0x0F

0x20

0x0A
⇒
0xFF

Unused

Defaults given in bold.

Light Instant Change 0x01 All 0x21 0x00 ⇒ 0xFF On-Level Set light to On-Level at next zero crossing.
[Added 20060420]

Light Manually Turned
Off

0x01 All 0x22 0x00 ⇒ 0xFF Not Parsed Indicates manual load status change.

Light Manually Turned
Off

0x02 All 0x22 0x00 ⇒ 0xFF Not Parsed Indicates manual load status change.

Light Manually Turned
On

0x01 All 0x23 0x00 ⇒ 0xFF Not Parsed Indicates manual load status change.

Light Manually Turned
On

0x02 All 0x23 0x00 ⇒ 0xFF Not Parsed Indicates manual load status change.

Reread Init Values

(SmartLabs 2486D
KeypadLinc Dimmer,
SmartLabs 2886D
Icon In-Wall
Controller)

0x01 0x09
0x0A

0x24 0x00 ⇒ 0xFF Not Parsed Depr
Deprecated (do not use in the future).
For KeypadLinc only, reread initialization
values from EEPROM, so that they will take
effect after being poked.

Reread Init Values

(SmartLabs 2486S
KeypadLinc Relay)

0x02 0x0F 0x24 0x00 ⇒ 0xFF Not Parsed Depr
Deprecated (do not use in the future).
For KeypadLinc only, reread initialization
values from EEPROM, so that they will take
effect after being poked.

Number of Taps
0x00 Unused

Remote SET Button
Tap

0x01 All 0x25

0x01 1 Tap

Cause a device to respond as if its SET
Button were tapped once or twice.

Dev Guide, Chapter 8 Page 132

August 16, 2007 © 2005-2007 SmartLabs Technology

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

0x02 2 Taps
0x03
⇒
0xFF

Unused

Reserved 0x26
Light Set Status 0x01 N/A 0x27 0x00 ⇒ 0xFF On-Level Updates SwitchLinc Companion’s LEDs.
Set Address MSB All All 0x28 0x00 ⇒ 0xFF High byte of 16-

bit address
DataTr, Depr
Deprecated (do not use in the future).
Set Most-significant Byte of EEPROM
address for peek or poke.

Poke One Byte All All 0x29 0x00 ⇒ 0xFF Byte to write DataTr, Depr
Deprecated (do not use in the future).
Poke Data byte into address previously
loaded with Set Address MSB and Peek
commands (Peek One Byte sets LSB).

Reserved All All 0x2A 0x00 ⇒ 0xFF DataTr, Depr
These are the Block Data Transfer
commands in ED messages.

Peek One Byte All All 0x2B 0x00 ⇒ 0xFF LSB of address
to peek or poke

DataTr, Depr
Deprecated (do not use in the future).
The returned ACK message will contain the
peeked byte in Command 2.
Peek One Byte is also used to set the LSB
for Poke One Byte.

Peek One Byte
Internal

All All 0x2C 0x00 ⇒ 0xFF LSB of internal
memory address to peek or
poke

DataTr, Depr
Deprecated (do not use in the future).
Works like Peek One Byte, except only
used to read from internal EEPROM of a
Smarthome ControLinc V2.

Poke One Byte
Internal

All All 0x2D 0x00 ⇒ 0xFF Byte to write DataTr, Depr
Deprecated (do not use in the future).
Works like Poke One Byte, except only
used to write into internal EEPROM of a
Smarthome ControLinc V2.

Light ON at Ramp
Rate

0x01 All 0x2E 0x00 ⇒ 0xFF On-Level and
Ramp Rate Combined

Bits 0-3 = 2 x Ramp Rate + 1
Bits 4-7 = On-Level + 0x0F

Reserved 0x2F
⇒
0x3F

Sprinkler Valve ON 0x04 All 0x40 0x00 ⇒ 0xFF Valve Number
Sprinkler Valve OFF 0x04 All 0x41 0x00 ⇒ 0xFF Valve Number
Sprinkler Program
ON

0x04 All 0x42 0x00 ⇒ 0xFF Program
Number

Sprinkler Program
OFF

0x04 All 0x43 0x00 ⇒ 0xFF Program
Number

Subcommand
0x00 Load Initialization

Values

0x01 Load EEPROM from
RAM

Load RAM parameters from RAM EEPROM

0x02 Get Valve Status ACK contains 1-byte valve status in
Command 2
0 = Off
1 = On

0x03 Inhibit Command
Acceptance

Stop accepting commands

0x04 Resume Command
Acceptance

Resume accepting commands

Sprinkler Control 0x04 All 0x44

0x05 Skip Forward Turn off active valve and continue with next
valve in program

Dev Guide, Chapter 8 Page 133

August 16, 2007 © 2005-2007 SmartLabs Technology

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

0x06 Skip Back Turn off active valve and continue with
previous valve in program

0x07 Enable Pump on V8 Enable pump control on V8
0x08 Disable Pump on V8 Disable pump control on V8
0x09 Broadcast ON Enable SB 0x27 Device Status Changed

broadcast on valve status change
0x0A Broadcast OFF Disable SB 0x27 Device Status Changed

broadcast on valve status change
0x0B Load RAM from

EEPROM
Load RAM parameters from EEPROM

0x0C Sensor ON Enable sensor reading
0x0D Sensor OFF Disable sensor reading
0x0E Diagnostics ON Put device in self-diagnostics
0x0F Diagnostics OFF Take device out of self-diagnostics
0x10
⇒
0xFF

Unused

Subcommand Dupl
0x00 Cancel LED Flashing

Flash LED

(SmartLabs 2676D-B
ICON Dimmer)

0x01 0x13 0x45

0x01
⇒
0xFF

Begin LED Flashing Device’s LED flashes ½ second on, ½
second off, until canceled

Subcommand Dupl
0x00 Cancel LED Flashing

Flash LED

(SmartLabs 2676R-B
ICON Relay)

0x02 0x13 0x45

0x01
⇒
0xFF

Begin LED Flashing Device’s LED flashes ½ second on, ½
second off, until canceled

Sprinkler Get Program
Request

0x04 All 0x45 0x00 ⇒ 0xFF Program
Number

Dupl
Added 5/05/06
Addressee responds with ED 0x41xx
Sprinkler Get Program Response

I/O Output On 0x07 All 0x45 0x00 ⇒ 0xFF Output Number Dupl
Turns Output Number On

I/O Output Off 0x07 All 0x46 0x00 ⇒ 0xFF Output Number Turns Output Number Off
I/O Alarm Data
Request

0x07 All 0x47 0x00 Addressee responds with an ED 0x4C00
Alarm Data Response message

Reserved 0x47 0x01 ⇒ 0xFF
I/O Write Output Port 0x07 All 0x48 0x00 ⇒ 0xFF Value to store

(only output bits are affected)
ACK contains byte written to Output Port in
Command 2

I/O Read Input Port 0x07 All 0x49 0x00 ACK contains byte read from Input Port in
Command 2

I/O Get Sensor Value 0x07 All 0x4A 0x00 ⇒ 0xFF Sensor number ACK contains Sensor Value in Command 2
I/O Set Sensor 1
Nominal Value

0x07 All 0x4B 0x00 ⇒ 0xFF Nominal Value Set Nominal Value for Sensor 1 to reach.
Other sensors can be set with ED 0x4Bxx
Set Sensor Nominal

Bits 0-3 Sensor number
Bits 4-6 Delta from nominal

I/O Get Sensor Alarm
Delta

0x07 All 0x4C

Bit 7 Delta Direction (+ if 0)

Dupl
When added to or subtracted from
midpoint, these are the values to trigger SB
0x27 Device Status Changed alarm
messages

Fan Capacity Dupl
Sent to controller when fan state changes.

Fan Status Report 0x05 0x00
0x02

0x4C

0x00
⇒
0x7F

Bits 0 - 6 = Fan
Capacity in CFM
Bit 7 = 0

Dev Guide, Chapter 8 Page 134

August 16, 2007 © 2005-2007 SmartLabs Technology

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

0x80
⇒
0xFF

Bits 0 - 6 = Fan
Capacity in CFM
Bit 7 = 1, fan was turned
off, Fan Capacity is
removed from total
airflow

Bits 0-1
00 Analog Input not used
01 Analog Input used, convert
 upon command
10 Analog Input used, convert
 at fixed interval
11 Unused
Bit 2 If 1, send SB 0x27
Device Status Changed
broadcast on Sensor Alarm
Bit 3 If 1, send SB 0x27
Device Status Changed
broadcast on Input Port
change
Bit 4 If 1, Enable 1-Wire port
(Sensors 1-8)
Bit 5 If 1, Enable ALL-Link
aliasing to default set
Bit 6 If 1, send SB 0x27
Device Status Changed
broadcast on Output Port
change

I/O Write
Configuration Port

0x07 All 0x4D

Bit 7 If 1, Enable Output
Timers

Modifies command responses

I/O Read
Configuration Port

0x07 All 0x4E 0x00 ACK contains byte read from Configuration
Port in Command 2. See SD 0x4Dxx Write
Configuration Port above for port bit
definitions.

Subcommand
0x00 Load Initialization

Values
Reset to factory default settings

0x01 Load EEPROM from
RAM

Makes permanent any changes to settings
such as those made to parameters with a
Poke command

0x02 Status Request ACK contains state of outputs in Command
2

0x03 Read Analog Once Starts the A/D conversion once
0x04 Read Analog Always Starts the A/D conversion at preset intervals
0x05 ⇒ 0x08 Unused
0x09 Enable Status Change

message
Enables SB 0x27 Device Status Changed
broadcast message each time the Input Port
status changes

0x0A Disable Status Change
message

Disables SB 0x27 Device Status Changed
broadcast message each time the Input Port
status changes

0x0B Load RAM from
EEPROM

Moves parameters from EEPROM into RAM

0x0C Sensor On Enable sensor reading
0x0D Sensor Off Disable sensor reading
0x0E Diagnostics On Put device in self-diagnostics mode
0x0F Diagnostics Off Take device out of self-diagnostics mode

I/O Module Control 0x07 All 0x4F

0x10 ⇒ 0xFF Unused

Dev Guide, Chapter 8 Page 135

August 16, 2007 © 2005-2007 SmartLabs Technology

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Pool Device ON 0x06 All 0x50 0x00 ⇒ 0xFF Device Number 0 = Unused
1 = Pool
2 = Spa
3 = Heat
4 = Pump
5 - 255 Aux

Pool Device OFF 0x06 All 0x51 0x00 ⇒ 0xFF Device Number 0 = All OFF
1 = Pool
2 = Spa
3 = Heat
4 = Pump
5 - 255 Aux

Pool Temperature Up 0x06 All 0x52 0x00 ⇒ 0xFF Temperature
Change

Increase current temperature setting by
Temperature Change x 0.5

Pool Temperature
Down

0x06 All 0x53 0x00 ⇒ 0xFF Temperature
Change

Decrease current temperature setting by
Temperature Change x 0.5

Subcommand
0x00 Load Initialization

Values

0x01 Load EEPROM from
RAM

0x02 Get Pool Mode ACK contains 1-byte thermostat mode in
Command 2
0 = Pool
1 = Spa
2 - 255 Unused

0x03 Get Ambient
Temperature

NClar
ACK contains ambient temperature in
Command 2

0x04 Get Water Temperature NClar
ACK contains water temperature in
Command 2

0x05 Get pH ACK contains pH value in Command 2

Pool Control 0x06 All 0x54

0x06
⇒
0xFF

Unused

Reserved 0x55
⇒
0x57

Subcommand
0x00 Raise Door
0x01 Lower Door
0x02 Open Door
0x03 Close Door
0x04 Stop Door
0x05 Single Door Open
0x06 Single Door Close

Door Move 0x0F All 0x58

0x07
⇒
0xFF

Unused

Subcommand
0x00 Raise Door
0x01 Lower Door
0x02 Open Door
0x03 Close Door
0x04 Stop Door
0x05 Single Door Open

Door Status Report 0x0F All 0x59

0x06 Single Door Close

Dev Guide, Chapter 8 Page 136

August 16, 2007 © 2005-2007 SmartLabs Technology

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

0x07
⇒
0xFF

Unused

Reserved 0x5A
⇒
0x5F

Subcommand
0x00 Open
0x01 Close
0x02 Stop
0x03 Program

Window Covering 0x0E All 0x60

0x04
⇒
0xFF

Unused

Window Covering
Position

0x0E All 0x61 0x00 ⇒ 0xFF Position 0x00 is closed, 0xFF is open.

Reserved 0x62
⇒
0x67

Thermostat
Temperature Up

0x05 All 0x68 0x00 ⇒ 0xFF Temperature
Change x 2 (unsigned byte)

Increase current temperature setting by
Temperature Change x 0.5

Thermostat
Temperature Down

0x05 All 0x69 0x00 ⇒ 0xFF Temperature
Change x 2 (unsigned byte)

Decrease current temperature setting by
Temperature Change x 0.5

Bits 0-4 Zone Number 0-31
00 = Temperature
01 = Setpoint
10 = Deadband

Bits 5,6

11 = Humidity

Thermostat Get Zone
Information

0x05 All 0x6A

Bit 7 Unused

ACK contains Zone Temperature, Setpoint,
Deadband, or Humidity as an unsigned
byte in Command 2

Subcommand
0x00 Load Initialization

Values

0x01 Load EEPROM from
RAM

0x02 Get Thermostat Mode ACK contains 1-byte thermostat mode in
Command 2
0x00 = Off
0x01 = Heat
0x02 = Cool
0x03 = Auto
0x04 = Fan
0x05 = Program
0x06 = Program Heat
0x07 = Program Cool
0x08 ⇒ 0xFF Unused

0x03 Get Ambient
Temperature

NClar
ACK contains ambient temperature in
Command 2

0x04 ON Heat Set mode to Heat
0x05 ON Cool Set mode to Cool
0x06 ON Auto Set mode to Auto
0x07 ON Fan Turn fan on
0x08 OFF Fan Turn fan off
0x09 OFF All Turn everything off
0x0A Program Heat Set mode to Program Heat
0x0B Program Cool Set mode to Program Cool

Thermostat Control 0x05 All 0x6B

0x0C Program Auto Set mode to Program Auto

Dev Guide, Chapter 8 Page 137

August 16, 2007 © 2005-2007 SmartLabs Technology

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

0x0D Get Equipment State Bit 0 = Cool active
Bit 1 = Heat active
Bit 2 = Programmable output available
Bit 3 = Programmable output state
Bits 4-7 Unused

0x0E Set Equipment State Bit 0 = Programmable output state
Bits 1-7 Unused

0x0F Get Temperature Units ACK contains Units in Command 2
0x00 = Fahrenheit
0x01 = Celsius
0x02 ⇒ 0xFF Unused

0x10 Set Fahrenheit Set Temperature Units to Fahrenheit
0x11 Set Celsius Set Temperature Units to Celsius
0x12 Get Fan-On Speed ACK contains speed fan will run at when

turned on, in Command 2
0x00 = Single-speed Fan
0x01 = Low Speed
0x02 = Medium Speed
0x03 = High Speed
0x04 ⇒ 0xFF Unused

0x13 Set Fan-On Speed Low Fan will run at low speed when on
(ignored by single-speed fans)

0x14 Set Fan-On Speed
Medium

Fan will run at medium speed when on
(Ignored by single-speed fans)

0x15 Set Fan-On Speed High Fan will run at high speed when on
(Ignored by single-speed fans)

0x16 Enable Status Change
message

Enables SB 0x27 Device Status Changed
broadcast message each time the
Thermostat Mode status changes

0x17 Disable Status Change
message

Disables SB 0x27 Device Status Changed
broadcast message each time the
Thermostat Mode status changes

0x18
⇒
0xFF

Unused

Thermostat Set Cool
Setpoint

0x05 All 0x6C 0x00 ⇒ 0xFF Temperature
Setpoint x 2 (unsigned byte)

Set current cool temperature setpoint to
Temperature Setpoint x 0.5

Thermostat Set Heat
Setpoint

0x05 All 0x6D 0x00 ⇒ 0xFF Temperature
Setpoint x 2 (unsigned byte)

Set current heat temperature setpoint to
Temperature Setpoint x 0.5

Reserved 0x6E
⇒
0x6F

0x00 Leak Detected
0x01 No Leak Detected
0x02 Battery Low

Leak Detector
Announce

0x09 All 0X70

0x03 Battery OK
Reserved 0x70 0x04 ⇒ 0xFF
Reserved 0x71

⇒
0x80

Assign to Companion
Group

0x01 0x01
0x04

0x81 0x00 ⇒ 0xFF Not Parsed Deprecated (do not use in the future).
For SwitchLinc only, allows Slaves of a
Master to follow the Master when the
Master is controlled by a companion
device.

Reserved 0x82
⇒
0xEF

Dev Guide, Chapter 8 Page 138

August 16, 2007 © 2005-2007 SmartLabs Technology

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

FX Commands All All 0xF0
⇒
0xFF

User-specific FX
These commands only function if FX
Usernames in a Controller and Responder
device match during linking.

Dev Guide, Chapter 8 Page 139

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Extended-length Direct Commands
The table below lists the existing INSTEON ED Extended-length Direct Commands.

The Note Key Req-All denotes INSTEON commands that must be supported by
INSTEON devices in all Device Categories. Req-All command names appear in bold
type.

The Note Key Req-Ex (…) denotes INSTEON commands that must be supported by
INSTEON devices in all Device Categories except as noted within the parentheses.
Req-Ex command names appear in bold type.

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Reserved 0x00 0x00 Must be undefined in all INSTEON devices
because this is the default Command to
execute using ED 0x0304 Set ALL-Link
Command Alias

Reserved 0x00 0x01⇒ 0xFF
Reserved 0x01

⇒
0x02

Req-All, Req-Ex (Required after 2/1/07)
D1 0x00 Reserved (always set to 0x00)
D2 0x00 ⇒ 0xFF
INSTEON Product Key MSB
D3 0x00 ⇒ 0xFF
INSTEON Product Key 2MSB
D4 0x00 ⇒ 0xFF
INSTEON Product Key LSB
D5 0x00 ⇒ 0xFF
Device Category (DevCat)
D6 0x00 ⇒ 0xFF
Device Subcategory (SubCat)
D7 0xFF
Reserved (always set to 0xFF)
(Matches byte in LSB of To Address of SB
0x01 SET Button Pressed Responder or
SB 0x02 SET Button Pressed Controller
commands)
D8 0xFF
Reserved (always set to 0xFF)
(Matches byte in Command 2 of SB 0x01
SET Button Pressed Responder or SB
0x02 SET Button Pressed Controller
commands)

Product Data
Response
[Response to SD
0x0300 Product Data
Request]

All All 0x03 0x00

D9 ⇒ D14
User-defined
Req-Ex (Only required for
devices that support FX Commands), FX
D1 ⇒ D8 0x00 ⇒ 0xFF
FX Command Username
Used for FX Commands, which are user-
specific SD or ED commands numbered
0xFF00 ⇒ 0xFFFF

FX Username
Response
[Response to SD
0x0301 FX Username
Request]

All All 0x03 0x01

D9 ⇒ D14
User-defined

Dev Guide, Chapter 8 Page 140

August 16, 2007 © 2005-2007 SmartLabs Technology

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Device Text String
Response
[Response to SD
0x0302 Device Text
String Request]

All All 0x03 0x02 D1 ⇒ D14 ASCII
Text string describing device
Null (0x00) terminated unless 14 bytes long

Set Device Text String All All 0x03 0x03 D1 ⇒ D14 ASCII
Text string describing device
Null (0x00) terminated unless 14 bytes long
D1 0x11 ⇒ 0xFF
ALL-Link Command Number to replace
with SD or ED Direct Command in D2, D3.
D2, D3 0x0000 ⇒ 0xFFFF
SD or ED Direct Command to execute in
place of ALL-Link Command in D1.
Set to 0x0000 to ignore ALL-Link
Command.
D4 0x00, 0x01 Flag
0x00 Direct Command is SD (Standard-

length).
0x01 Direct Command is ED Extended-

length),
ED 0x0305 Set ALL-Link Command
Alias Extended Data message
follows.

Set ALL-Link
Command Alias

All All 0x03 0x04

D5 ⇒ D14 Unused
Set ALL-Link
Command Alias
Extended Data

All All 0x03 0x05 D1 ⇒ D14 0x00 ⇒ 0xFF
Data field of ED Command to execute in
place of ALL-Link Command in D1 of
previous ED 0x0304 Set ALL-Link
Command Alias message.

Reserved 0x03 0x06 ⇒ 0xFF
Reserved 0x04

⇒
0x29

DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB

0x00 Transfer Failure

D3 ⇒ D14 Unused
DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB
D3 Final 1 byte

0x01 Transfer Complete,
1 byte in this last message

D4 ⇒ D14 Unused
DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB
D3 ⇒ D4 Final 2 bytes

0x02 Transfer Complete,
2 bytes in this last message

D5 ⇒ D14 Unused
DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB
D3 ⇒ D5 Final 3 bytes

0x03 Transfer Complete,
3 bytes in this last message

D6 ⇒ D14 Unused
DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB

Block Data Transfer All All 0x2A

0x04 Transfer Complete,
4 bytes in this last message

D3 ⇒ D6 Final 4 bytes

Dev Guide, Chapter 8 Page 141

August 16, 2007 © 2005-2007 SmartLabs Technology

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

D7 ⇒ D14 Unused
DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB
D3 ⇒ D7 Final 5 bytes

0x05 Transfer Complete,
5 bytes in this last message

D8 ⇒ D14 Unused
DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB
D3 ⇒ D8 Final 6 bytes

0x06 Transfer Complete,
6 bytes in this last message

D9 ⇒ D14 Unused
DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB
D3 ⇒ D9 Final 7 bytes

0x07 Transfer Complete,
7 bytes in this last message

D10 ⇒ D14 Unused
DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB
D3 ⇒ D10 Final 8 bytes

0x08 Transfer Complete,
8 bytes in this last message

D11 ⇒ D14 Unused
DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB
D3 ⇒ D11 Final 9 bytes

0x09 Transfer Complete,
9 bytes in this last message

D12 ⇒ D14 Unused
DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB
D3 ⇒ D12 Final 10 bytes

0x0A Transfer Complete,
10 bytes in this last message

D13 ⇒ D14 Unused
DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB
D3 ⇒ D13 Final 11 bytes

0x0B Transfer Complete,
11 bytes in this last message

D13 Unused
DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB

0x0C Transfer Complete,
12 bytes in this last message

D3 ⇒ D14 Final 12 bytes
DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB

0x0D Transfer Continues,
12 bytes in this message

D3 ⇒ D14 12 bytes
0x0E ⇒ 0xFE Reserved

DataTr
D1 0x00 ⇒ 0xFF Source address MSB
D2 0x00 ⇒ 0xFF Source address LSB
D3 0x00 ⇒ 0xFF Destination addr MSB
D4 0x00 ⇒ 0xFF Destination addr LSB
D5 0x00 ⇒ 0xFF Block length MSB

0xFF Request Block Data
Transfer

D6 0x00 ⇒ 0xFF Block length LSB

Dev Guide, Chapter 8 Page 142

August 16, 2007 © 2005-2007 SmartLabs Technology

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

D7 0x00 ⇒ 0xFF Destination ID MSB
D8 0x00 ⇒ 0xFF Destination ID 2MSB
D9 0x00 ⇒ 0xFF Destination ID LSB
D10 ⇒ D14 Unused

Reserved 0x2B
⇒
0x2D

D1 0x00 ⇒ 0xFF Button/Group Number
D2 0x00 Data
Request
[Addressee
responds with Data
Response]

D3 ⇒ D14 Unused

D3 0x00 ⇒ 0x0F X10
House Code #1
(0x20 = none)
D4 0x00 ⇒ 0x0F X10
Unit Code #1
D5 0x00 ⇒ 0x0F X10
House Code #2
(0x20 = none)
D6 0x00 ⇒ 0x0F X10
Unit Code #2
D7 0x00 ⇒ 0x0F X10
House Code #3
(0x20 = none)
D8 0x00 ⇒ 0x0F X10
Unit Code #3
D9 0x00 ⇒ 0x0F X10
House Code #4
(0x20 = none)
D10 0x00 ⇒ 0x0F
X10 Unit Code #4
D11 0x00 ⇒ 0x0F
X10 House Code #5
(0x20 = none)
D12 0x00 ⇒ 0x0F
X10 Unit Code #5

D2 0x01 Data
Response
[Response to Data
Request]

D13 ⇒ D14 Unused
D2 0x02 ⇒ 0x03 Unused

D3 0x00 ⇒ 0x0F X10
House Code
(0x20 = none)
D4 0x00 ⇒ 0x0F X10
Unit Code

D2 0x04 Set X10
Address

D5 ⇒ D14 Unused

Extended Set/Get

(SmartLabs 2430
ControLinc and 2830
Icon Tabletop
Controller)

0x00 0x04
0x06

0x2E 0x00

D2 0x05 ⇒ 0xFF Unused
D1 0x00 ⇒ 0xFF Button/Group Number
D2 0x00 Data
Request
[Addressee
responds with Data
Response]

D3 ⇒ D14 Unused
Extended Set/Get

(SmartLabs 2843
RemoteLinc)

0x00 0x05 0x2E 0x00

D2 0x01 Data
Response
[Response to Data

D3 0x00 ⇒ 0xFF
Awake Time Upon
Heartbeat, seconds

Dev Guide, Chapter 8 Page 143

August 16, 2007 © 2005-2007 SmartLabs Technology

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

D4 0x00 ⇒ 0xFF
Heartbeat Interval
X 755.2 seconds
(12.5 minutes)
D5 0x00 ⇒ 0xFF
Number of SB 0x04
Heartbeat messages
to send upon
Heartbeat
D6 0x00 ⇒ 0xFF
Button Trigger-ALL-
Link Bitmap
If bit = 0, associated
button sends normal
Command
If bit = 0, associated
button sends ED
0x30 Trigger ALL-
Link Command to first
device in ALDB

Request]

D7 ⇒ D14 Unused
D3 0x00 ⇒ 0xFF
Awake Time Upon
Heartbeat, seconds

D2 0x02 Set
Awake Time Upon
Heartbeat

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0xFF
Heartbeat Interval
X 755.2 seconds
(12.5 minutes)

D2 0x03 Set
Heartbeat Interval

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0xFF
Number of SB 0x04
Heartbeat messages
to send upon
Heartbeat

D2 0x04 Set
Number of SB
0x04 Heartbeat
messages to send
upon Heartbeat

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0x01
0 = Button sends
normal Command
1 = Button sends ED
0x30 Trigger ALL-
Link Command to first
device in ALDB

D2 0x05 Set
Trigger-ALL-Link
State for Button

D4 ⇒ D14 Unused
D2 0x06 ⇒ 0xFF Unused
D1 0x00 ⇒ 0xFF Button/Group Number
D2 0x00 Data
Request
[Addressee
responds with Data
Response]

D3 ⇒ D14 Unused

D3 0x00 ⇒ 0xFF
Button’s LED-Follow
Mask
D4 0x00 ⇒ 0xFF
Button’s LED-Off
Mask

Extended Set/Get

(SmartLabs 2486D
KeypadLinc Dimmer,
SmartLabs 2886D
Icon In-Wall
Controller)

0x01 0x09
0x0A

0x2E 0x00

D2 0x01 Data
Response
[Response to Data
Request]

D5 0x00 ⇒ 0xFF
Button’s X10 House
Code

Dev Guide, Chapter 8 Page 144

August 16, 2007 © 2005-2007 SmartLabs Technology

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

D6 0x00 ⇒ 0xFF
Button’s X10 Unit
Code
D7 0x00 ⇒ 0x1F
Button’s Ramp Rate
D8 0x00 ⇒ 0xFF
Button’s On- Level
D9 0x11 ⇒ 0x7F
Global LED
Brightness
D10 0x00 ⇒ 0xFF
Non-toggle Bitmap
If bit = 0, associated
button is Toggle
If bit = 1, associated
button is Non-toggle
D11 0x00 ⇒ 0xFF
Button-LED State
Bitmap
If bit = 0, associated
button’s LED is Off
If bit = 1, associated
button’s LED is On
D12 0x00 ⇒ 0xFF
X10-All Bitmap
If bit = 0, associated
button sends X10
On/Off
If bit = 1, associated
button sends X10 All-
On/All-Off
D13 0x00 ⇒ 0xFF
Button Non-toggle
On/Off Bitmap
If bit = 0, associated
button, if Non-toggle,
sends Off
If bit = 0, associated
button, if Non-toggle,
sends On
D14 0x00 ⇒ 0xFF
Button Trigger-ALL-
Link Bitmap
If bit = 0, associated
button sends normal
Command
If bit = 0, associated
button sends ED
0x30 Trigger ALL-
Link Command to first
device in ALDB
D3 0x00 ⇒ 0xFF
If bit = 0, associated
button’s LED is not
affected
If bit = 1, associated
button’s LED follows
this button’s LED

D2 0x02 Set LED-
Follow Mask for
Button

D4 ⇒ D14 Unused

Dev Guide, Chapter 8 Page 145

August 16, 2007 © 2005-2007 SmartLabs Technology

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

D3 0x00 ⇒ 0xFF
If bit = 0, associated
button’ LED is not
affected
If bit = 1, associated
button’s LED turns off
when this button is
pushed

D2 0x03 Set LED-
Off Mask for Button

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0xFF
X10 House Code
D4 0x00 ⇒ 0xFF
X10 Unit Code

D2 0x04 Set X10
Address for Button

D5 ⇒ D14 Unused
D3 0x00 ⇒ 0x1F
Ramp Rate (0.1
second to 9 minutes)

D2 0x05 Set Ramp
Rate for Button

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0xFF On-
Level

D2 0x06 Set On-
Level for Button

D4 ⇒ D14 Unused
D3 0x11 ⇒ 0x7F
Brightness for all
LEDs when on

D2 0x07 Set Global
LED Brightness
(ignores D1)

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0x01
0 = Button is Toggle
1 = Button is Non-
toggle

D2 0x08 Set Non-
toggle State for
Button

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0x01
0 = Turn button’s LED
Off
1 = Turn button’s LED
On

D2 0x09 Set LED
State for Button

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0x01
0 = Button sends X10
On/Off
1 = Button sends X10
All-On/All-Off

D2 0x0A Set X10
All-On State for
Button

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0x01
0 = If Non-toggle,
Button sends Off
Command
1 = If Non-toggle,
Button sends On
Command

D2 0x0B Set Non-
toggle On/Off State
for Button

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0x01
0 = Button sends
normal Command
1 = Button sends ED
0x30 Trigger ALL-
Link Command to first
device in ALDB

D2 0x0C Set
Trigger-ALL-Link
State for Button

D4 ⇒ D14 Unused
D2 0x0D ⇒ 0xFF Unused

Extended Set/Get 0x01 All 0x2E 0x00 D1 0x00 ⇒ 0xFF Button/Group Number

Dev Guide, Chapter 8 Page 146

August 16, 2007 © 2005-2007 SmartLabs Technology

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

D2 0x00 Data
Request
[Addressee
responds with Data
Response]

D3 ⇒ D14 Unused

D3 Unused
D4 Unused
D5 0x00 ⇒ 0x0F X10
House Code
(0x20 = none)
D6 0x00 ⇒ 0x0F X10
Unit Code
D7 0x00 ⇒ 0x1F
Ramp Rate
D8 0x00 ⇒ 0xFF On-
Level
D9 0x00 ⇒ 0xFF
Signal-to-Noise
Threshold

D2 0x01 Data
Response
[Response to Data
Request]

D10 ⇒ D14 Unused
D2 0x02 ⇒ 0x03 Unused

D3 0x00 ⇒ 0x0F X10
House Code
(0x20 = none)
D4 0x00 ⇒ 0x0F X10
Unit Code

D2 0x04 Set X10
Address

D5 ⇒ D14 Unused
D3 0x00 ⇒ 0x1F
Ramp Rate (0.1
second to 9 minutes)

D2 0x05 Set Ramp
Rate

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0xFF On-
Level

D2 0x06 Set On-
Level

D4 ⇒ D14 Unused

But
0x09
0x0A

D2 0x07 ⇒ 0xFF Unused
D1 0x00 ⇒ 0xFF Button/Group Number
D2 0x00 Data
Request
[Addressee
responds with Data
Response]

D3 ⇒ D14 Unused

D3 0x00 ⇒ 0xFF
Button’s LED-Follow
Mask
D4 0x00 ⇒ 0xFF
Button’s LED-Off
Mask
D5 0x00 ⇒ 0xFF
Button’s X10 House
Code
D6 0x00 ⇒ 0xFF
Button’s X10 Unit
Code
D7 0x00 ⇒ 0x1F
Button’s Ramp Rate
(ignore for relay)

Extended Set/Get

(SmartLabs 2486S
KeypadLinc Relay)

0x02 0x0F 0x2E 0x00

D2 0x01 Data
Response
[Response to Data
Request]

D8 0x00 ⇒ 0xFF
Button’s On- Level

Dev Guide, Chapter 8 Page 147

August 16, 2007 © 2005-2007 SmartLabs Technology

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

D9 0x11 ⇒ 0x7F
Global LED
Brightness
D10 0x00 ⇒ 0xFF
Non-toggle Bitmap
If bit = 0, associated
button is Toggle
If bit = 1, associated
button is Non-toggle
D11 0x00 ⇒ 0xFF
Button-LED State
Bitmap
If bit = 0, associated
button’s LED is Off
If bit = 1, associated
button’s LED is On
D12 0x00 ⇒ 0xFF
X10-All Bitmap
If bit = 0, associated
button sends X10
On/Off
If bit = 1, associated
button sends X10 All-
On/All-Off
D13 0x00 ⇒ 0xFF
Button Non-toggle
On/Off Bitmap
If bit = 0, associated
button, if Non-toggle,
sends Off
If bit = 0, associated
button, if Non-toggle,
sends On
D14 0x00 ⇒ 0xFF
Button Trigger-ALL-
Link Bitmap
If bit = 0, associated
button sends normal
Command
If bit = 0, associated
button sends ED
0x30 Trigger ALL-
Link Command to first
device in ALDB
D3 0x00 ⇒ 0xFF
If bit = 0, associated
button’s LED is not
affected
If bit = 1, associated
button’s LED follows
this button’s LED

D2 0x02 Set LED-
Follow Mask for
Button

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0xFF
If bit = 0, associated
button’ LED is not
affected
If bit = 1, associated
button’s LED turns off
when this button is
pushed

D2 0x03 Set LED-
Off Mask for Button

D4 ⇒ D14 Unused
D2 0x04 Set X10
Address for Button

D3 0x00 ⇒ 0xFF
X10 House Code

Dev Guide, Chapter 8 Page 148

August 16, 2007 © 2005-2007 SmartLabs Technology

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

D4 0x00 ⇒ 0xFF
X10 Unit Code
D5 ⇒ D14 Unused
D3 0x00 ⇒ 0x1F
Ramp Rate (0.1
second to 9 minutes)

D2 0x05 Set Ramp
Rate for Button

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0xFF On-
Level

D2 0x06 Set On-
Level for Button

D4 ⇒ D14 Unused
D3 0x11 ⇒ 0x7F
Brightness for all
LEDs when on

D2 0x07 Set Global
LED Brightness
(ignores D1)

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0x01
0 = Button is Toggle
1 = Button is Non-
toggle

D2 0x08 Set Non-
toggle State for
Button

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0x01
0 = Turn button’s LED
Off
1 = Turn button’s LED
On

D2 0x09 Set LED
State for Button

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0x01
0 = Button sends X10
On/Off
1 = Button sends X10
All-On/All-Off

D2 0x0A Set X10
All-On State for
Button

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0x01
0 = If Non-toggle,
Button sends Off
Command
1 = If Non-toggle,
Button sends On
Command

D2 0x0B Set Non-
toggle On/Off State
for Button

D4 ⇒ D14 Unused
D3 0x00 ⇒ 0x01
0 = Button sends
normal Command
1 = Button sends ED
0x30 Trigger ALL-
Link Command to first
device in ALDB

D2 0x0C Set
Trigger-ALL-Link
State for Button

D4 ⇒ D14 Unused
D2 0x0D ⇒ 0xFF Unused
D1 0x00 ⇒ 0xFF Button/Group Number
D2 0x00 Data
Request
[Addressee
responds with Data
Response]

D3 ⇒ D14 Unused

D3 Unused
D4 Unused

Extended Set/Get 0x02 All
But

0x0F

0x2E 0x00

D2 0x01 Data
Response
[Response to Data
Request] D5 0x00 ⇒ 0x0F X10

House Code
(0x20 = none)

Dev Guide, Chapter 8 Page 149

August 16, 2007 © 2005-2007 SmartLabs Technology

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

D6 0x00 ⇒ 0x0F X10
Unit Code
D7 ⇒ D14 Unused

D2 0x02 ⇒ 0x03 Unused
D3 0x00 ⇒ 0x0F X10
House Code
(0x20 = none)
D4 0x00 ⇒ 0x0F X10
Unit Code

D2 0x04 Set X10
Address

D5 ⇒ D14 Unused
D2 0x05 ⇒ 0xFF Unused

Reserved 0x2E 0x01 ⇒ 0xFF
Req-All, Req-Ex, DataTr
(Required for all i2 devices)
Not implemented in i1 devices
D1 Unused

D3 0x00 ⇒ 0xFF
Address High Byte
D4 0x00 ⇒ 0xFF
Address Low Byte
D5 0x00 Dump all
records
D5 0x01 ⇒ 0xFF
Dump one record

D2 0x00 ALDB
Record Request
[Addressee
responds with
ALDB Record
Response(s)]

NOTE: Set
address to 0x0000
to start at first
record in ALDB.
(Actual memory
address is 0x0FFF
in SmartLabs
devices.)

D6 ⇒ D14 Unused

D3 0x00 ⇒ 0xFF
Address High Byte
D4 0x00 ⇒ 0xFF
Address Low Byte
D5 Unused
D6 ⇒ D13
0x00 ⇒ 0xFF
Returned 8-byte
Record

D2 0x01 ALDB
Record Response
[Response to
ALDB Record
Request]

If D5 of ALDB
Record Request
was 0x00, return
one record, else
return all records
until end of ALDB
is reached. (Flag
Byte in last record
will be 0x00).

Address is
automatically
decremented by 8
for each record
returned.

D14 Unused

D3 0x00 ⇒ 0xFF
Address High Byte
D4 0x00 ⇒ 0xFF
Address Low Byte

Read/Write ALL-Link
Database (ALDB)

All All 0x2F 0x00

D2 0x02 Write
ALDB Record

D5 0x01 ⇒ 0x08
Number of Bytes
(0x09 ⇒ 0xFF is the
same as 0x08)

Dev Guide, Chapter 8 Page 150

August 16, 2007 © 2005-2007 SmartLabs Technology

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

D6 ⇒ D13
0x00 ⇒ 0xFF 8-byte
Record to Write
D14 Unused

D2 0x03 ⇒ 0xFF Unused
Reserved 0x2F 0x01 ⇒ 0xFF

D1 0x00 ⇒ 0xFF Button/Group Number
D2 On-Level Switch
 0x00 Use On-Level stored in ALDB
 0x01 Use On-Level in D3
 0x02 ⇒ 0xFF Unused
D3 0x00 ⇒ 0xFF On-Level if D2 = 0x01
D4 0x00 ⇒ 0xFF SA Command 1 to send
D5 0x00 ⇒ 0xFF SA Command 2 to send
D6 Ramp Rate Switch
 0x00 Use Ramp Rate stored in ALDB
 0x01 Use instant Ramp Rate
 0x02 ⇒ 0xFF Unused

Trigger ALL-Link
Command

(SmartLabs 2476D
SwitchLinc i2 Dimmer
600 W, 2476DH
SwitchLinc i2 Dimmer
1000 W, 2486D
KeypadLinc Dimmer,
2886D Icon In-Wall
Controller)

0x01 0x01
0x04
0x09
0x0A

0x30 0x00

D7 ⇒ D14 Unused
D1 0x00 ⇒ 0xFF Button/Group Number
D2 On-Level Switch
 0x00 Use On-Level stored in ALDB
 0x01 Use On-Level in D3
 0x02 ⇒ 0xFF Unused
D3 0x00 ⇒ 0xFF On-Level if D2 = 0x01
D4 0x00 ⇒ 0xFF SA Command 1 to send
D5 0x00 ⇒ 0xFF SA Command 2 to send
D6 Ramp Rate Switch
 0x00 Use Ramp Rate stored in ALDB
 0x01 Use instant Ramp Rate
 0x02 ⇒ 0xFF Unused

Trigger ALL-Link
Command

(SmartLabs 2476S
SwitchLinc i2 Relay,
2486S KeypadLinc
Relay)

0x02 0x0A
0x0F

0x30 0x00

D7 ⇒ D14 Unused
Reserved 0x31

⇒
0x3F

Set Sprinkler Program 0x04 All 0x40 0x00 ⇒ 0xFF Program
Number
(0x00 is Default Program)

D1 to D14 contain program data to set

Sprinkler Get Program
Response
[Response to SD
0x45xx Sprinkler Get
Program Request]

0x04 All 0x41 0x00 ⇒ 0xFF Program
Number
(0x00 is Default Program)

Added 5/05/06
D1 to D14 contain program data

Reserved 0x42
⇒
0x4A

D1 0x00 ⇒ 0xFF Sensor Nominal Value I/O Set Sensor
Nominal

0x07 All 0x4B 0x00 ⇒ 0xFF Sensor Number
D2 ⇒ D14 Unused

I/O Alarm Data
Response
[Response to SD
0x4700 I/O Alarm
Data Request]

0x07 All 0x4C 0x00 D1 ⇒ D14 Alarm 1-14 Data

Reserved 0x4C 0x01 ⇒ 0xFF
Reserved 0x4D

⇒
0x4F

Dev Guide, Chapter 8 Page 151

August 16, 2007 © 2005-2007 SmartLabs Technology

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

D1 0x00 Unused
D1 0x01 Pool
D1 0x02 Spa
D1 0x03 ⇒ 0xFF Unused
D2 0x00 ⇒ 0xFF Temperature

Pool Set Device
Temperature

0x06 All 0x50 0x00

D3 ⇒ D14 Unused
D1 0x00 Unused
D1 0x01 Pool
D1 0x02 Spa
D1 0x03 ⇒ 0xFF Unused
D2 0x00 ⇒ 0xFF Hysteresis

Pool Set Device
Hysteresis

0x06 All 0x50 0x01

D3 ⇒ D14 Unused
Reserved 0x50 0x02 ⇒ 0xFF
Reserved 0x51

⇒
0x67

D1 0x00 ⇒ 0xFF Temperature Change x 2 Thermostat Zone
Temperature Up

0x05 All 0x68 0x00 ⇒ 0xFF Zone Number
D2 ⇒ D14 Unused
D1 0x00 ⇒ 0xFF Temperature Change x 2 Thermostat Zone

Temperature Down
0x05 All 0x69 0x00 ⇒ 0xFF Zone Number

D2 ⇒ D14 Unused
Reserved 0x6A

⇒
0x6B

D1 0x00 ⇒ 0xFF Temperature Setpoint x 2
D2 0x00 ⇒ 0xFF Deadband x 2

Thermostat Set Zone
Cool Setpoint

0x05 All 0x6C 0x00 ⇒ 0xFF Zone Number

D3 ⇒ D14 Unused
D1 0x00 ⇒ 0xFF Temperature Setpoint x 2
D2 0x00 ⇒ 0xFF Deadband x 2

Thermostat Set Zone
Heat Setpoint

0x05 All 0x6D 0x00 ⇒ 0xFF Zone Number

D3 ⇒ D14 Unused
Reserved 0x6E

⇒
0xEF

FX Commands All All 0xF0
⇒
0xFF

User-specific FX
These commands only function if FX
Usernames in a Controller and Responder
device match during linking.
D1 to D14 are user-specific.

Dev Guide, Chapter 8 Page 152

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON ALL-Link Commands
This section lists SA Standard-length and EA Extended-length INSTEON ALL-Link
Commands in two separate tables. Because EA commands are not currently used,
the EA table is blank.

SA ALL-Link Commands are sent twice, first in an SA ALL-Link Broadcast message to
all of the members of an ALL-Link Group, followed by separate SC ALL-Link Cleanup
messages sent to each individual member of the ALL-Link Group.

In the SA ALL-Link Broadcast message, the ALL-Link Group Number appears in the
To Address field, and the Command 2 field contains 0x00 (with one exception for
certain legacy devices as noted in the table below for the Light Start Manual Change
Command 0x17).

In SC ALL-Link Cleanup messages, the ALL-Link Group Number moves to the
Command 2 field, because the To Address field contains the INSTEON Address of the
individual ALL-Link Group member.

INSTEON Standard-length ALL-Link Commands
The table below lists the existing INSTEON SA Standard-length ALL-Link Commands.

The Note Key Req-All denotes INSTEON commands that shall be supported by
INSTEON devices in all Device Categories. Req-All command names appear in bold
type.

These same commands are used in both SA ALL-Link Broadcast messages and SC
ALL-Link Cleanup messages.

SA Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Reserved 0x00
⇒
0x10

0x00 for initial SA Broadcast,
0x00 ⇒ 0xFF (Group Number)
for SC Cleanups

ALL-Link Recall

(Used as ALL-Link
Light ON by legacy
controllers)

All All 0x11 0x00 for initial SA Broadcast,
0x00 ⇒ 0xFF (Group Number)
for SC Cleanups

Req-All
Responder reverts to state remembered
during ALL-Linking.

ALL-Link Alias 2 High

(Used as Light ON
Fast by legacy
controllers)

All All 0x12 0x00 for initial SA Broadcast,
0x00 ⇒ 0xFF (Group Number)
for SC Cleanups

Ignore Command unless, if previously set
up by default or by using ED 0x0304 Set
ALL-Link Command Alias, then execute
substitute Direct Command.

For DevCats 0X01 and 0x02, defaults to
SD 0x1200 Light ON Fast, which goes to
saved On-Level instantly.

ALL-Link Alias 1 Low

(Used as Light OFF by
legacy controllers)

All All 0x13 0x00 for initial SA Broadcast,
0x00 ⇒ 0xFF (Group Number)
for SC Cleanups

Ignore Command unless, if previously set
up by default or by using ED 0x0304 Set
ALL-Link Command Alias, then execute
substitute Direct Command.

For DevCats 0X01 and 0x02, defaults to
SD 0x1300 Light OFF, which goes full off at
saved Ramp Rate.

Dev Guide, Chapter 8 Page 153

August 16, 2007 © 2005-2007 SmartLabs Technology

SA Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

ALL-Link Alias 2 Low

(Used as Light OFF
Fast by legacy
controllers)

All All 0x14 0x00 for initial SA Broadcast,
0x00 ⇒ 0xFF (Group Number)
for SC Cleanups

Ignore Command unless, if previously set
up by default or by using ED 0x0304 Set
ALL-Link Command Alias, then execute
substitute Direct Command.

For DevCats 0X01 and 0x02, defaults to
SD 0x1400 Light OFF Fast, which goes full
off instantly.

ALL-Link Alias 3 High

(Used as Light
Brighten One Step by
legacy controllers)

All All 0x15 0x00 for initial SA Broadcast,
0x00 ⇒ 0xFF (Group Number)
for SC Cleanups

Ignore Command unless, if previously set
up by default or by using ED 0x0304 Set
ALL-Link Command Alias, then execute
substitute Direct Command.

For DevCats 0X01 and 0x02, defaults to
SD 0x1500 Light Brighten One Step. There
are 32 steps from off to full brightness.

ALL-Link Alias 3 Low

(Used as Light Dim by
legacy controllers)

All All 0x16 0x00 for initial SA Broadcast,
0x00 ⇒ 0xFF (Group Number)
for SC Cleanups

Ignore Command unless, if previously set
up by default or by using ED 0x0304 Set
ALL-Link Command Alias, then execute
substitute Direct Command.

For DevCats 0X01 and 0x02, defaults to
SD 0x1500 Light Dim One Step. There are
32 steps from off to full brightness.

ALL-Link Alias 4 High

(Used as Light Start
Manual Change by
legacy controllers)

All All 0x17 0x00 for initial SA Broadcast,
0x00 ⇒ 0xFF (Group Number)
for SC Cleanups

NOTE: Certain legacy
SmartLabs Controllers and
Responders (ControLinc V2,
SwitchLinc V2, KeypadLinc V2,
and LampLinc V2) use this
Command 2 field to hold a
direction parameter during the
SA Broadcast.

0x01 means Increase and
0x00 means Decrease.

Those legacy Controllers do
not follow up the SA Broadcast
of this Command with an SC
Cleanup sequence.

Ignore Command unless, if previously set
up by default or by using ED 0x0304 Set
ALL-Link Command Alias, then execute
substitute Direct Command.

For DevCats 0X01 and 0x02, defaults to
SD 0x1700 Light Start Manual Change,
which starts changing the On-Level.

ALL-Link Alias 4 Low

(Used as Light Stop
Manual Change by
legacy controllers)

All All 0x18 0x00 for initial SA Broadcast,
0x00 ⇒ 0xFF (Group Number)
for SC Cleanups

NOTE: Certain legacy
SmartLabs Controllers
(ControLinc V2, SwitchLinc V2,
and KeypadLinc V2) do not
follow up the SA Broadcast of
this Command with an SC
Cleanup sequence.

Ignore Command unless, if previously set
up by default or by using ED 0x0304 Set
ALL-Link Command Alias, then execute
substitute Direct Command.

For DevCats 0X01 and 0x02, defaults to
SD 0x1800 Light Stop Manual Change,
which stops changing the On-Level.

Reserved 0x19
⇒
0x20

0x00 for initial SA Broadcast,
0x00 ⇒ 0xFF (Group Number)
for SC Cleanups

Do not add any new commands in this
interval because legacy devices do not
parse message type flags or DevCats.

Dev Guide, Chapter 8 Page 154

August 16, 2007 © 2005-2007 SmartLabs Technology

SA Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

ALL-Link Alias 5 All All 0x21 0x00 for initial SA Broadcast,
0x00 ⇒ 0xFF (Group Number)
for SC Cleanups

Ignore Command unless, if previously set
up by default or by using ED 0x0304 Set
ALL-Link Command Alias, then execute
substitute Direct Command.

For DevCats 0X01 and 0x02, defaults to
SD 0x2100 Light Instant Change, which
restores light to On-Level in ALL-Link
Database at next zero crossing.
[Added 20060420]

Reserved 0x22
⇒
0xFF

0x00 for initial SA Broadcast,
0x00 ⇒ 0xFF (Group Number)
for SC Cleanups

INSTEON Extended-length ALL-Link Commands
The table below lists the existing INSTEON Extended-length ALL-Link Commands.
Because EA commands are not currently used, this table is blank.

EA Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Reserved 0x00
⇒
0xFF

0x00 for initial EA Broadcast,
0x00 ⇒ 0xFF (Group Number)
for EC Cleanups

Dev Guide, Chapter 8 Page 155

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Broadcast Commands
This section lists SB Standard-length and EB Extended-length INSTEON Broadcast
Commands in two separate tables. Because EB commands are not currently used,
the EB table is blank.

INSTEON Standard-length Broadcast Commands
The table below lists the existing INSTEON SB Standard-length Broadcast
Commands.

The Note Key Req-All denotes INSTEON commands that must be supported by
INSTEON devices in all Device Categories. Req-All command names appear in bold
type.

The Note Key Req-Ex (…) denotes INSTEON commands that must be supported by
INSTEON devices in all Device Categories except as noted within the parentheses.
Req-Ex command names appear in bold type.

The Note Key Req-DC denotes INSTEON commands that must be supported only by
those INSTEON devices in the Device Categories given in the DevCat and SubCat
columns. Req-DC command names appear in underlined type.

SB Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Reserved 0x00
SET Button Pressed
Responder

All All 0x01 Reserved
(Set to 0xFF)

Req-Ex (Required for Responder-only or
Controller/Responder devices)
Possible Linking Mode for a Responder or
Controller/Responder device.
Every INSTEON device must send either
SB 0x01 or SB 0x02

SET Button Pressed
Controller

All All 0x02 Reserved
(Set to 0xFF)

Req-Ex (Required for Controller-only
devices)
Possible Linking Mode for a Controller-only
device.
Every INSTEON device must send either
SB 0x01 or SB 0x02

0x00 Sender is on powerline phase A (low cycle).
Receiver blinks LED fast for 10 seconds if
on same phase.
Receiver blinks LED slow for 10 seconds if
on opposite phase.

Test Powerline Phase
(Only sent by i2/RF
devices, with Max
Hops = 0)

All All 0x03

0x01 Sender is on powerline phase B (high
cycle).
Receiver blinks LED fast for 10 seconds if
on same phase.
Receiver blinks LED slow for 10 seconds if
on opposite phase.

Reserved 0x03 0x03 ⇒ 0xFF
Heartbeat

(SmartLabs 2843
RemoteLinc)

0x00 0x05 0x04 0x00 ⇒ 0xFF Battery Level Req-DC
Periodic broadcast set up using ED 0x2E
Extended Set/Get

Reserved 0x05
⇒
0x26

Device Status
Changed

All All 0x27 Reserved
(Set to 0xFF)

Sent by a device when its status changes

Dev Guide, Chapter 8 Page 156

August 16, 2007 © 2005-2007 SmartLabs Technology

SB Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Reserved 0x28
⇒
0x48

SALad Debug
Report

All All 0x49 0x00 ⇒ 0xFF Not Parsed Req-Ex (Only required for SALad-enabled
devices)
The two low bytes of the To Address
contain the high and low bytes of the
Program Counter for a SALad program
being remotely debugged.

Reserved 0x4A
⇒
0xFF

INSTEON Extended-length Broadcast Commands
The table below lists the existing INSTEON Extended-length Broadcast Commands.
Because EB commands are not currently used, this table is blank.

EB Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Reserved 0x00
⇒
0xFF

Dev Guide, Chapter 8 Page 157

August 16, 2007 © 2005-2007 SmartLabs Technology

Required INSTEON Commands
This section reprints in one table the Commands required for INSTEON conformance,
excerpted from the INSTEON Command Tables document.

See the Universally-Required ALL-Link Command116, Required Direct Commands118,
and Required Broadcast Commands123 sections above for more information about the
required Commands, depending on whether the Command is ALL-Link, Direct, or
Broadcast.

See the INSTEON Command Set Tables124 for an explanation of the color coding and
abbreviations used in the Note Keys.

Required Commands for All INSTEON
Devices

This table shows the Commands that all INSTEON devices must support, no matter
which DevCat the device belongs to.

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Assign to ALL-Link
Group

All All 0x01 0x00 ⇒ 0xFF Group Number Req-All
Used during INSTEON device linking
session.

Delete from ALL-
Link Group

All All 0x02 0x00 ⇒ 0xFF Group Number Req-All
Used during unlinking session.

Product Data
Request

All All 0x03 0x00 Req-All, Req-Ex (Required after 2/1/07)
Addressee responds with an ED 0x0300
Product Data Response message

Enter Linking Mode All All 0x09 0x00 ⇒ 0xFF Group Number Req-All
Same as holding down SET Button for 10
seconds
NOTE: Not supported by i1 devices

Enter Unlinking
Mode

All All 0x0A 0x00 ⇒ 0xFF Group Number Req-All
NOTE: Not supported by i1 devices

Get INSTEON Engine
Version

All All 0x0D 0x00 Req-All
Returned ACK message will contain the
INSTEON Engine Version in Command 2.
0x00 = i1 (default echo for legacy devices)
0x01 = i2

Ping All All 0x0F 0x00
(0x01 ⇒ 0xFF Not Parsed in
legacy devices. Use only 0x00
in the future.)

Req-All
Addressee returns an ACK message but
performs no operation.

ID Request All All 0x10 0x00
(0x01 ⇒ 0xFF Not Parsed in
legacy devices. Use only 0x00
in the future.)

Req-All
Addressee first returns an ACK message,
then it sends an SB 0x01 SET Button
Pressed Responder or SB 0x02 SET
Button Pressed Controller Broadcast
message, but it does not enter Linking
Mode.

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Req-All, Req-Ex (Required after 2/1/07)
D1 0x00 Reserved (always set to 0x00)

Product Data
Response
[Response to SD
0x0300 Product Data

All All 0x03 0x00

D2 0x00 ⇒ 0xFF
INSTEON Product Key MSB

Dev Guide, Chapter 8 Page 158

August 16, 2007 © 2005-2007 SmartLabs Technology

D3 0x00 ⇒ 0xFF
INSTEON Product Key 2MSB
D4 0x00 ⇒ 0xFF
INSTEON Product Key LSB
D5 0x00 ⇒ 0xFF
Device Category (DevCat)
D6 0x00 ⇒ 0xFF
Device Subcategory (SubCat)
D7 0xFF
Reserved (always set to 0xFF)
(Matches byte in LSB of To Address of SB
0x01 SET Button Pressed Responder or
SB 0x02 SET Button Pressed Controller
commands)
D8 0xFF
Reserved (always set to 0xFF)
(Matches byte in Command 2 of SB 0x01
SET Button Pressed Responder or SB
0x02 SET Button Pressed Controller
commands)

Request]

D9 ⇒ D14
User-defined
Req-All, Req-Ex, DataTr
(Required for all i2 devices)
Not implemented in i1 devices
D1 Unused

D3 0x00 ⇒ 0xFF
Address High Byte
D4 0x00 ⇒ 0xFF
Address Low Byte
D5 0x00 Dump all
records
D5 0x01 ⇒ 0xFF
Dump one record

D2 0x00 ALDB
Record Request
[Addressee
responds with
ALDB Record
Response(s)]

NOTE: Set
address to 0x0000
to start at first
record in ALDB.
(Actual memory
address is 0x0FFF
in SmartLabs
devices.)

D6 ⇒ D14 Unused

D3 0x00 ⇒ 0xFF
Address High Byte
D4 0x00 ⇒ 0xFF
Address Low Byte
D5 Unused
D6 ⇒ D13
0x00 ⇒ 0xFF
Returned 8-byte
Record

D2 0x01 ALDB
Record Response
[Response to
ALDB Record
Request]

If D5 of ALDB
Record Request
was 0x00, return
one record, else
return all records
until end of ALDB
is reached. (Flag
Byte in last record
will be 0x00).

Address is
automatically
decremented by 8
for each record
returned.

D14 Unused

D3 0x00 ⇒ 0xFF
Address High Byte

Read/Write ALL-Link
Database (ALDB)

All All 0x2F 0x00

D2 0x02 Write
ALDB Record

D4 0x00 ⇒ 0xFF
Address Low Byte

Dev Guide, Chapter 8 Page 159

August 16, 2007 © 2005-2007 SmartLabs Technology

D5 0x01 ⇒ 0x08
Number of Bytes
(0x09 ⇒ 0xFF is the
same as 0x08)
D6 ⇒ D13
0x00 ⇒ 0xFF 8-byte
Record to Write
D14 Unused

D2 0x03 ⇒ 0xFF Unused

SA Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

ALL-Link Recall

(Used as ALL-Link
Light ON by legacy
controllers)

All All 0x11 0x00 for initial SA Broadcast,
0x00 ⇒ 0xFF (Group Number)
for SC Cleanups

Req-All
Responder reverts to state remembered
during ALL-Linking.

SB Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

SET Button Pressed
Responder

All All 0x01 Reserved
(Set to 0xFF)

Req-Ex (Required for Responder-only or
Controller/Responder devices)
Possible Linking Mode for a Responder or
Controller/Responder device.
Every INSTEON device must send either
SB 0x01 or SB 0x02

SET Button Pressed
Controller

All All 0x02 Reserved
(Set to 0xFF)

Req-Ex (Required for Controller-only
devices)
Possible Linking Mode for a Controller-only
device.
Every INSTEON device must send either
SB 0x01 or SB 0x02

Note that the SET Button Pressed Responder and SET Button Pressed Controller SB
Commands are included in this table because one or the other, or possibly both
Commands must be supported by all INSTEON devices.

Dev Guide, Chapter 8 Page 160

August 16, 2007 © 2005-2007 SmartLabs Technology

Required Commands for Some INSTEON
Devices

This table shows the Commands that certain INSTEON devices must support if they
meet the conditions given in red type.

SD Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

FX Username
Request

All All 0x03 0x01 Req-Ex (Only required for devices that
support FX Commands) , FX
Addressee responds with an ED 0x0301
FX Username Response message

ED Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

Req-Ex (Only required for
devices that support FX Commands), FX
D1 ⇒ D8 0x00 ⇒ 0xFF
FX Command Username
Used for FX Commands, which are user-
specific SD or ED commands numbered
0xFF00 ⇒ 0xFFFF

FX Username
Response
[Response to SD
0x0301 FX Username
Request]

All All 0x03 0x01

D9 ⇒ D14
User-defined

SB Commands
Dev
Cat

Sub
Cat

Cmd
1

Cmd 2 Note Keys, Description

SALad Debug Report

All All 0x49 0x00 ⇒ 0xFF Not Parsed Req-Ex (Only required for SALad-enabled
devices)
The two low bytes of the To Address
contain the high and low bytes of the
Program Counter for a SALad program
being remotely debugged.

Required Commands for a Device Category
Device Categories (DevCats) are used to qualify Direct Commands (SD or ED), as
described above in the section Required Direct Commands within a DevCat118. See
the INSTEON Command Set Tables124 for the current list of required SD and ED
Commands for each DevCat. Required Direct Commands within a DevCat are given
in the INSTEON Command Set Tables124 in underline type.

Dev Guide, Chapter 8 Page 161

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Command Number
Assignment

Manufacturers may contact SmartLabs Technology in order to apply for a new
INSTEON Command Number (ICN).

In the future, manufacturers of INSTEON products will receive new INSTEON
Commands (ICNs) for their products from a secure INSTEON Command Number
Server (ICNS). SmartLabs will provide authorized manufacturers conditional access
to the ICNS.

To apply for a new ICN, a manufacturer will fill in an application for a new Command.
SmartLabs personnel will review the application, and if approved, the ICNS will issue
a new ICN to the manufacturer via email.

INSTEON Command Database (ICDB)
ICNs are a shared public resource. INSTEON Controller devices use them to initiate
actions from linked INSTEON Responder devices. ICNs also serve as a lookup key to
the INSTEON Command Database (ICDB).

ICDB Lookup Keys
The main key to the ICDB will be the ICN concatenated with the message length
(Standard or Extended), the message type (Direct, ALL-Link, or Broadcast), and the
1-byte Device Category (DevCat).

ICDB Records
Queries to the ICDB will return XML files. The XML schema is not yet defined, but
some fields could be:

• Text name of the Command

• Button label for the Command

• INSTEON Products (given by the INSTEON Product Key) that use the
Command

• Allowed Command parameters

• Reply expected

Dev Guide, Chapter 8 Page 162

August 16, 2007 © 2005-2007 SmartLabs Technology

About INSTEON Peek and Poke
Commands

You can use the SD Standard-length Peek One Byte and Poke One Byte INSTEON
Commands (0x28 ⇒ 0x2D) to remotely read or write one byte of memory at a time
in INSTEON devices. For example, if you know the relevant memory addresses, you
could inspect or alter the INSTEON ALL-Link Database101 of an INSTEON device to
determine which INSTEON ALL-Link Groups93 it belongs to (i.e. which other INSTEON
devices it has ALL-Links to).

However, these are legacy commands whose continued use is deprecated. Higher-
level software such as that described in Chapter 10 — INSTEON Modems217 and
Chapter 12 — SmartLabs Device Manager (SDM) Reference336 provide functions that
read and write a device’s ALL-Link Database and other key memory locations without
regard to absolute memory addresses.

To transfer arbitrary blocks of data from memory to memory between INSTEON
devices, SmartLabs has defined a set of ED Extended-length Block Data Transfer
Commands.

This section describes both Using Peek and Poke Commands for One Byte162 and
Using the Block Data Transfer Command for Multiple Bytes163. It also gives some
Peek and Poke Command Examples164.

Using Peek and Poke Commands for One
Byte

SALad-enabled INSTEON devices, such as The SmartLabs PowerLinc Controller28,
map all memory to one Flat Memory Map170, but other INSTEON devices, such as
SmartLabs’ ControLinc™ V2, LampLinc™ V2, and SwitchLinc™ V2, do not have a flat
address space. For flat devices, use the SD 0x2B Peek One Byte and SD 0x29 Poke
One Byte commands to access all memory. For non-flat devices use those
Commands to access external EEPROM. You can only use SD 0x2C Peek One Byte
Internal, and SD 0x2D Poke One Byte Internal to access internal EEPROM of the
ControLinc™ V2. Note that you cannot access a device’s ROM using these
Commands.

To peek or poke remote memory data, first use the SD 0x28 Set Address MSB
Command to set the high byte of the 16-bit address you want to read from or write
to. You will set the LSB of the address differently depending on what you will be
doing next. If you are going to Poke One Byte or Poke One Byte Internal, you first
have to execute a Peek One Byte Command to set the address LSB. In the other
cases, Peek One Byte and Peek One Byte Internal, you will set the LSB in the
Command itself. Note that the address LSB does not auto-increment.

To peek one byte of data, use Peek One Byte or Peek One Byte Internal. The SD
Acknowledgement message that you receive back will contain the peeked byte in the
Command 2 field.

To poke one byte of data, use Poke One Byte or Poke One Byte Internal. Remember
to set the address you want to poke to by using a Set Address MSB Command
followed by a Peek One Byte Command. The Command 2 field of the SD

Dev Guide, Chapter 8 Page 163

August 16, 2007 © 2005-2007 SmartLabs Technology

Acknowledgement message that you receive back will contain the value of the byte
you are poking before it was altered by the poke.

Using the Block Data Transfer Command for
Multiple Bytes

The ED Extended-length Block Data Transfer Command set (0x2Axx) is a powerful
mechanism for memory-to-memory transfer of data from one INSTEON device to
another. The transfer uses ED Extended-length Direct messages to carry the data
independently of other intervening INSTEON traffic.

To initiate a transfer, send an ED 0x2AFF Request Block Data Transfer Command
with the 16-byte memory Source Address, memory Destination Address, and Block
Length fields specified in the User Data field. Set the Destination ID field to the
INSTEON address of the device that will be receiving the data. If you want the
sending device to peek data from the Request Block Data Transfer addressee, you
would set the Destination ID to that of the sending device. If you want to poke data
to the addressee, set the Destination ID to that of the addressee. If you want the
addressee to transfer memory data to some other INSTEON device, set the
Destination ID to that of the other device.

Once the transfer begins, some number (possibly zero) of ED 0x2A0D Transfer
Continues messages will carry 12 bytes of data each from the Request Block Data
Transfer Command addressee to the Destination ID device. After as many groups of
12 bytes as needed has been transferred using Transfer Continues messages, a final
ED 0x2Axx Transfer Complete, xx Bytes Remaining message will transfer the
remainder of the bytes. Here, xx designates how many bytes are in the remainder
message, and it ranges from 0x01 to 0x0C (1 to 12).

If the transfer is aborted for some reason, the transfer sender should send an ED
0x2A00 Transfer Failure message.

Note that not all INSTEON devices implement the Block Data Transfer Commands.
To test whether an INSTEON device can execute this Command set, try peeking one
byte of data from it. If it does not respond with ED 0x2D01 Transfer Complete, 1
Byte in This Last Message, then you can try Peek One Byte as described in Using
Peek and Poke Commands for One Byte162 above.

Dev Guide, Chapter 8 Page 164

August 16, 2007 © 2005-2007 SmartLabs Technology

Peek and Poke Command Examples
To see some typical examples of INSTEON Commands being used in INSTEON
messages, look in the sections Example of an INSTEON ALL-Linking Session97 and
Example of an ALL-Link Command Sequence99.

The examples in this section are fairly sophisticated. To use them, you must know
what you are doing. In particular, you should fully understand the INSTEON ALL-
Link Database101, which is not documented until later in this Developer’s Guide.

Some of the examples involve directly poking data into an INSTEON Device’s ALL-
Link Database. If you do this improperly you can corrupt the database and cause
the device to malfunction, in which case you will need to perform a ‘Factory Reset’
on the INSTEON device. The User Guide for the device will explain how to do this.

Common SmartLabs INSTEON Device Memory Locations
This table gives some memory locations found in many SmartLabs INSTEON devices,
such as the LampLinc™, SwitchLinc™, and KeypadLinc™.

Address Variable Name Description

0x0001 EESize MSB of size of EEPROM chip in device

0x0002 EEVersion Firmware Revision number

0x0020 EEOnLevel Preset On-Level for lighting control

0x0021 EERampRate Ramp Rate for lighting control

0x0030 EEX10BaseHouse Base X10 House Code for device

0x0031 EEX10BaseUnit Base X10 Unit Code for device

Assumptions for the Following Examples
The numbers in these examples are all hexadecimal.

We assume that you are using The SmartLabs PowerLinc Controller28 (PLC) with an
INSTEON Address of 01.02.03 to send and receive INSTEON messages.

The INSTEON device you are talking to is a SmartLabs LampLinc V2 Dimmer with an
INSTEON Address of A1.A2.A3.

All INSTEON messages have a Max Hops of 3 and a Hops Left of 3, so the low nibble
of the Flags byte is always 0xF.

These examples involve peeking and poking data directly in the LampLinc’s memory
using the INSTEON Peek One Byte and Poke One Byte Commands. We assume that
you have read Using Peek and Poke Commands for One Byte162, which explains how
to use these Commands.

Dev Guide, Chapter 8 Page 165

August 16, 2007 © 2005-2007 SmartLabs Technology

Peek an On-Level

PLC Sends LampLinc Responds

Set Address MSB to 00 OK

From Address 01 02 03 (PLC) A1 A2 A3 (LampLinc)

To Address A1 A2 A3 (LampLinc) 01 02 03 (PLC)

Flags 0F (SD Message) 2F (SD ACK Message)

Command 1 28 (Set Address MSB) 28 (Set Address MSB)

Command 2 00 (MSB of 0x0020) 00 (MSB of 0x0020)

Peek One Byte at Address 0020 OK

From Address 01 02 03 (PLC) A1 A2 A3 (LampLinc)

To Address A1 A2 A3 (LampLinc) 01 02 03 (PLC)

Flags 0F (SD Message) 2F (SD ACK Message)

Command 1 2B (Peek) 2B (Peek)

Command 2 20 (LSB of 0x0020) XX (Byte at 0x0020)

Poke a New Ramp Rate

PLC Sends LampLinc Responds

Set Address MSB to 00 OK

From Address 01 02 03 (PLC) A1 A2 A3 (LampLinc)

To Address A1 A2 A3 (LampLinc) 01 02 03 (PLC)

Flags 0F (Direct Message) 2F (Direct ACK Message)

Command 1 28 (Set Address MSB) 28 (Set Address MSB)

Command 2 00 (MSB of 0x0021) 00 (MSB of 0x0021)

Peek One Byte to Set Address LSB to 21 OK

From Address 01 02 03 (PLC) A1 A2 A3 (LampLinc)

To Address A1 A2 A3 (LampLinc) 01 02 03 (PLC)

Flags 0F (Direct Message) 2F (Direct ACK Message)

Command 1 2B (Peek) 2B (Peek)

Command 2 21 (LSB of 0x0021) XX (Byte at 0x0021)

Poke One Byte 80 at Address 0021 OK

From Address 01 02 03 (PLC) A1 A2 A3 (LampLinc)

To Address A1 A2 A3 (LampLinc) 01 02 03 (PLC)

Flags 0F (Direct Message) 2F (Direct ACK Message)

Command 1 29 (Poke) 29 (Poke)

Command 2 80 (Byte to poke) 80 (Byte to poke)

Dev Guide, Chapter 9 Page 166

August 16, 2007 © 2005-2007 SmartLabs Technology

Chapter 9 — INSTEON BIOS (IBIOS)

The INSTEON Basic Input/Output System (IBIOS) implements the basic functionality
of INSTEON devices like the SmartLabs PowerLinc™ V2 Controller (PLC). Developers
who are using one of the INSTEON Modems described in Chapter 10 — INSTEON
Modems217 may skip this chapter, since an IM provides high-level access to IBIOS
functionality along with additional functions that the IBIOS does not support directly.

Built on a flat 16-bit address space, the IBIOS firmware includes PLC event
generation, USB or RS232 serial communications, IBIOS Serial Command
processing, a software realtime clock, a SALad language interpreter, an INSTEON
Engine that handles low-level INSTEON messaging, and various other functions.

The SALad language interpreter runs SALad applications that can stand alone or
interface serially with other computing devices. The SmartLabs PowerLinc
Controller28 comes from the factory with a pre-installed SALad coreApp Program272
that provides onboard event handling, INSTEON device ALL-Linking, and many other
useful functions not supported by IBIOS. But even without a SALad program like
coreApp running, IBIOS offers a sophisticated serial interface to the outside world.

This chapter explains what the INSTEON Engine does, what IBIOS Events occur, how
serial communication works, how to use IBIOS Serial Commands directly, and other
features of IBIOS. See Chapter 11 — SALad Language Documentation263 for
complete information on writing and running SALad programs.

In This Chapter

IBIOS Flat Memory Model167
Describes how physical memory is mapped into a single 16-bit address space and
gives a table of all important memory locations.

IBIOS Events185
Lists the Events that IBIOS generates and explains how they work.

IBIOS Serial Communication Protocol and Settings192
Describes the serial communication protocol, the port settings for an RS232 link,
and how to use a USB link.

IBIOS Serial Commands196
Lists and describes the IBIOS Serial Commands, and gives usage examples.

IBIOS INSTEON Engine211
Discusses the functionality of the INSTEON Engine.

IBIOS Software Realtime Clock/Calendar212
Describes how to use the software realtime clock/calendar.

IBIOS X10 Signaling213
Explains usage of the X10 powerline interface.

IBIOS Input/Output214
Gives details on the Pushbutton input and LED flasher.

IBIOS Remote Debugging215
Describes how SALad programs can be remotely debugged using IBIOS.

IBIOS Watchdog Timer216
Describes how the watchdog timer works.

Dev Guide, Chapter 9 Page 167

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Flat Memory Model
All IBIOS memory, no matter what its physical address, is accessed using a flat 16-
bit address space. Microcontroller RAM, microcontroller internal (high-speed)
EEPROM, external I2C serial (low-speed) EEPROM, and any other I2C chips are all
mapped into this single 16-bit space.

In This Section

Flat Memory Addressing168
Describes how the various physical memory regions are mapped into one 16-bit
address space, and how I2C addressing works.

Flat Memory Map170
Gives a table of all important IBIOS memory locations.

Dev Guide, Chapter 9 Page 168

August 16, 2007 © 2005-2007 SmartLabs Technology

Flat Memory Addressing
The 16-bit flat address space is broken up into two regions. The bottom 32K
(0x0000 through 0x7FFF) is a fixed area that always maps to the same physical
memory. The top 32K (0x8000 through 0xFFFF) is a variable area that maps to the
physical memory of up to four different I2C chips provided in hardware, under control
of the register I2C_Addr.

The bottom 32K fixed area always contains the microcontroller RAM registers in
addresses 0x0000 through 0x01FF, and microcontroller internal EEPROM in
addresses 0x200 through 0x02FF. The remainder of the bottom 32K, from 0x0300
through 0x7FFF, always maps to the physical memory of the primary external I2C
serial EEPROM chip from 0x0000 through 0x7CFF. (The primary external I2C serial
chip has all of its chip-select pins tied low in hardware.)

To choose which of the four possible I2C chips to map to the top 32K of the flat
address space, set the top 7 bits of the I2C_Addr register. The top 4 bits (bits 7 – 4)
will match the I2C address burned into the I2C chip by the manufacturer. Bits 3 and
2 will match the way the chip-select pins of the I2C chip are wired in hardware. Set
the bit to 0 for a pin that is tied low, or to 1 for a pin that is tied high. The third
chip-select pin must always be tied low in hardware so that bit 1 of the I2C_Addr
register can be used to indicate whether the I2C chip uses 8-bit or 16-bit addressing.
(A chip with no more than 256 memory locations, such as a realtime clock chip, will
normally use 8-bit addressing, but chips with more than 256 memory locations, such
as serial EEPROMs, must use 16-bit addressing.)

While the top 7 bits of the I2C_Addr register uniquely identify which I2C chip to map
into the top 32K of flat memory, the least-significant bit (the LSb, bit 0), selects
whether the bottom 32K or the top 32K of this chip’s memory will appear in that
space. If the I2C chip in question does not contain more than 32K of memory, it
does not actually matter how the I2C_Addr register’s LSb is set. But if the I2C chip
does contain more than 32K of memory, then setting the LSb to 0 will access the
bottom 32K, and setting the LSb to 1 will access any memory above 32K.

Note that I2C chips that contain fewer than 32K addresses in power-of-two
increments (e.g. 1K, 2K, 4K, 8K, or 16K chips) will have their available addresses
repeated multiple times in the top 32K of flat memory. For example, an 8K chip will
appear four times in the 32K space, and a 16K chip will appear twice.
(Mathematically, if the chip contains 2^N addresses, and N is 15 or less, then the
chip’s contents will be repeated 2^(15 – N) times in the top 32K of flat memory.)

Overall Flat Memory Map
Address Range Contents

0x0000⇒0x01FF Microcontroller RAM Registers

0x0200⇒0x02FF Microcontroller Hi speed EEPROM

0x0300⇒0x7FFF Serial I2C EEPROM physical addresses 0x0000 through 0x7CFF

0x8000⇒0xFFFF Varies depending on contents of register I2C_Addr

I2C_Addr: xxxxxxx0 = I2C physical addresses 0x0000⇒0x7FFF

I2C_Addr: xxxxxxx1 = I2C physical addresses 0x8000⇒0xFFFF

Dev Guide, Chapter 9 Page 169

August 16, 2007 © 2005-2007 SmartLabs Technology

I2C_Addr Register
I2C_Addr Register

Bit Meaning

7 (MSb)

6

5

4

Top nibble of I2C Address burned into I2C chip by manufacturer.

3

2

Top 2 of 3 chip-select pins tied high or low in hardware design.

There can be a total of 4 I2C chips.

1 3rd of 3 chip-select pins must be tied low in hardware design, so that IBIOS can use this bit as
follows:

0 = I2C chip uses 8-bit addressing (e.g. realtime clock chip).

1 = I2C chip uses 16-bit addressing (e.g. serial EEPROM).

0 (LSb) Defined by I2C spec as Read/Write bit, but used by IBIOS as follows:

0 = bottom 32K of I2C chip is mapped to top 32K of flat memory.

1 = top 32K of I2C chip is mapped to top 32K of flat memory.

Dev Guide, Chapter 9 Page 170

August 16, 2007 © 2005-2007 SmartLabs Technology

Flat Memory Map
The memory map for devices containing an i2 INSTEON Engine has changed. See i2
Engine Memory Map170 for the new memory map and i1 Engine Memory Map178 for
the original one.

i2 Engine Memory Map
i2 Address i2 Register and Bits Description

0x0024 NTL_CNT Count for SALad block mode operations

0x0026 RD_H Remote Debugging breakpoint address MSB

0x0027 RD_L Remote Debugging breakpoint address LSB

0x0028 PC_H SALad Program Counter MSB

0x0029 PC_L SALad Program Counter LSB

0x002A DB_H Database Pointer MSB

0x002B DB_L Database Pointer LSB

0x002C NTL_SP_H Return Stack Pointer MSB

0x002D NTL_SP_L Return Stack Pointer LSB

0x0033 NTL_BUFFER Pointer to end of Timer Buffer, which begins at 0x0046. This
8-bit pointer defaults to 0x4D to allow room for 4 timers which
are 2 bytes each.

0x0034 NTL_RND Random Number Register

0x0035 NTL_REG_H High byte of Pointer to R0

0x0036 NTL_REG_L Low byte of Pointer to R0

0x0037 NTL_EVENT Event used to invoke SALad

0x0038 ⇒
0x003F

NTL_EVNT0-

NTL_EVNT7

Static Event Queue

0x0040 NTL_TIME_H Time-of-day alarm (minutes since midnight MSB)

0x0041 NTL_TIME_L Time-of-day alarm (minutes since midnight LSB)

0x0042 NTL_TICK Zero Crossing count down tick timer

0x0048 ⇒
NTL_BUFFER

NTL_TIMERS Timer Buffer; Starts at 0x0046

NTL_BUFFER
⇒ NTL_SP

NTL_REGS User Register Space

NTL_SP ⇒
0x006F

NTL_STACK SALad Return Stack

NOTE: The following serial receive buffer only exists for devices with serial communications

0x011F ⇒
0x0140

RX_Buffer Serial receive buffer (33 bytes)

Dev Guide, Chapter 9 Page 171

August 16, 2007 © 2005-2007 SmartLabs Technology

i2 Address i2 Register and Bits Description

RX_PTR Points to next open slot in serial receive buffer

_RX_NotEmpty 5 1=Receive buffer contains data

0x0141

_RX_Full 6 1=Receive buffer full

NOTE: The following locations differ with or without an RX_Buffer

I_Control INSTEON result flags

_I_SendDirect 5 0=Send INSTEON from working buffer, 1=Send INSTEON
direct

_I_Transmit 4 1=Request To Send INSTEON

_RF_LowBatt 2 1=Battery Low

_RF_Disable 1 1=Disables RF

0x013D if
RX_Buffer

0x0153 if no
RX_Buffer

_InsteonDisable 0 1=Disables INSTEON Engine

I_Error INSTEON error flags 0x013E if
RX_Buffer

0x0154 if no
RX_Buffer

_MsgFail 4 1=Transmitted message was interrupted by incoming message

NOTE: The following locations are the same with or without an RX_Buffer

0x016B TAP_CNT Counts multiple SET Button taps

Control General system control flags

 _Reset 7 1=Request system reset

 _Watchdog 6 1=Request watchdog reset

 _ForceDebug 5 1=Force Debugging to start each time SALad starts

 _PDI 2 1=Daughter card interrupt occurred and has been serviced

 _NoEventRpt 1 1=Inhibit static event report

0x016C

 _TAP_LAST 0 Last state of push button

0x0174 TOKEN Currently executing SALad instruction token

NTL_STAT SALad Status Register

_I2C_E1 7 0=I2C Closed, 1=I2C Open

_I2C_E0 6 0=!2C read, 1=I2C Write

_NTL_16 5 0=8 bit, 1=16 bit

_NTL_Idle 4 Idle process active

_DB_PASS 3 1=ALL-Link Database search successful

_NTL_DZ 2 1=Divide by Zero

0x0175

_NTL_BO 1 1=Buffer Overrun

Dev Guide, Chapter 9 Page 172

August 16, 2007 © 2005-2007 SmartLabs Technology

i2 Address i2 Register and Bits Description

_NTL_CY 0 1=Carry from Math and Test operations

NTL_CONTROL SALad debugging control flags

_RD_HALT _RD_STEP

0 0 Normal execution

0 1 Animation (Trace)

1 0 Execution halted

_RD_STEP

_RD_HALT

7

6

1 1 Single step requested

_RD_BREAK 5 0=Range Check Mode, 1=Breakpoint Mode

_MEM_LOCK 4 1=memory is write-locked to SALad programs

_I2C_WD 3 1=I2C Write Delay disable

_I2C_EM 2 Last EE Mode, 0=read, 1=write

_NTL_FN 1 1=Extended function enable

0x0176

_NTL_AI 0 1=Auto Increment enable

0x01DB TX_PTR Address of next byte in TX_Buffer

0x01DC ⇒
0x01DF

TX_Buffer Serial Transmit Buffer (4 bytes)

0x01E0 Tick Incremented from 0⇒120 every second

0x01E0 Tick Incremented from 0⇒120 every second

0x01E1 RTC_TIME_H Time since midnight in minutes (MSB, 0-1439)

0x01E2 RTC_TIME_L Time since midnight in minutes (LSB, 0-1439)

0x01E3 RTC_YEAR Year (0-99)

0x01E4 RTC_MON Month (1-12)

0x01E5 RTC_DAY Day (1-31, month specific)

0x01E6 RTC_DOW Day-of-Week bitmap (0SSFTWTM)

0x01E7 RTC_HOUR Hour (0-23)

0x01E8 RTC_MIN Minute (0-59)

0x01E9 RTC_SEC Second (0-59)

0x01ED X10_RX X10 Receive Buffer

0x01EE X10_TX X10 Transmit Buffer

X10_FLAGS X10 Flags

_X10_RTS 7 1=Request To Send

0x01EF

_X10_TX 6 1=Transmitting, 0=Receiving

Dev Guide, Chapter 9 Page 173

August 16, 2007 © 2005-2007 SmartLabs Technology

i2 Address i2 Register and Bits Description

_X10_EXTENDED 5 1=Extended transfer in progress (Tx or Rx)

_X10_COMBUF 4 1=Command, 0=Address (for internal use)

_X10_TXCOMMAND 3 1=Command, 0=Address for transmit

_X10_RXCOMMAND 2 1=Command, 0=Address for receive

_X10_VALID 1 1=X10 receive valid

_X10_ACTIVE 0 1=X10 active (for internal use)

0x0164 LED_MODE Bitmap defines flashing pattern for LED

1=On, 0=Off

0x0165 LED_TMR Duration of LED flashing in seconds

0x0166 LED_DLY Period between each flash. Defaults to 5, which is 1/8 second
per bit in LED_MODE.

RS_CONTROL Control flags for serial command interpreter

_RS_ComReset 7

_RS_ComLimit2 6

_RS_ComLimit1 5

These are used for serial command time limit. This limits how
long a command remains active in SALad. This prevents the
serial engine from locking you out if SALad receives a corrupt
command (non-native serial command). Default time limit is
two seconds. To disable, clear bits 5⇒7.

_I_DebugEnable 4 1=Enable debug report

_RS_AppLock 3 1=Enable overwriting of SALad code from 0x0200 to end of
SALad App given in 0x0216 and 0x0217

_RS_ComDisable 2 1=Core command processing disabled

_RS_ComActive 1 1=Command active for SALad processing (Non-native serial
command)

0x0167

_RS_02 0 1=0x02 received for command start

RS_ERROR RS232 Error register

_TX_Full 4 Transmit buffer full

0x0169

_TX_Empty 3 Transmit buffer empty

EventMask Mask to enable or disable events

_EM_BtnTap 7 1=enabled

_EM_BtnHold 6 1=enabled

_EM_BtnRel 5 1=enabled

_EM_TickTimer 4 1=enabled

_EM_Alarm 3 1=enabled

_EM_Midnight 2 1=enabled

0x016F

_EM_2AM 1 1=enabled

Dev Guide, Chapter 9 Page 174

August 16, 2007 © 2005-2007 SmartLabs Technology

i2 Address i2 Register and Bits Description

_EM_RX 0 1=enabled

0x017D I2C_ADDR Address of I2C device; bit 0 controls 0x8000 ⇒ 0xFFFF of flat
model, 1=hi region, 0=low region

0x01A0 DB_FLAGS Database search mode bitmap

0x01A1 DB_0 Database ID_H;

(INSTEON construction buffer) From Address_H; ignored for
INSTEON message construction

0x01A2 DB_1 Database ID_M;

(INSTEON construction buffer) From Address_M; ignored for
INSTEON message construction

0x01A3 DB_2 Database ID_L;

(INSTEON construction buffer) From Address_L; ignored for
INSTEON message construction

0x01A4 DB_3 Database Command 1;

(INSTEON construction buffer) To Address_H

0x01A5 DB_4 Database Command 2;

(INSTEON construction buffer) To Address_M

0x01A6 DB_5 Database Group Number;

(INSTEON construction buffer) To Address_L

0x01A7 DB_6 Database State;

(INSTEON construction buffer) Message Flags

0x01A8 DB_7 Message Command 1;

(INSTEON construction buffer) Command 1

0x01A9 DB_8 Message Command 2;

(INSTEON construction buffer) Command 2

0x01AA DB_9

NOTE: The following locations may move as a group in different devices

0X01AB RxFrom0 Receive “From” address high byte

0x01AC RxFrom1 Receive “From” address middle byte

0x01AD RxFrom2 Receive “From” address low byte

0x01AE RxTo0 Receive “To” address high byte

0x01AF RxTo1 Receive “To” address middle byte

0x01B0 RxTo2 Receive “To” address low byte

RxExtRpt Receive Control Flags

 _RxBroadcastBit 7 Broadcast Message

0x01B1

 _RxGroup 6 ALL-Link Message

Dev Guide, Chapter 9 Page 175

August 16, 2007 © 2005-2007 SmartLabs Technology

i2 Address i2 Register and Bits Description

 _RxAckBit 5 Acknowledge Message

 _RxExtMsgBit 4 Extended Message

 _RxMsgRpt 3,2 Hops Left

 _RxTotalRpt 1,0 Max Hops

0x01B2 RxCmd1 Command byte 1

0x01B3 RxCmd2 Command byte 2

0x01B4 RxExtData0 Standard message CRC or Extended message User Data D1

0x01B5 RxExtData1 Extended message User Data D2

0x01B6 RxExtData2 Extended message User Data D3

0x01B7 RxExtData3 Extended message User Data D4

0x01B8 RxExtData4 Extended message User Data D5

0x01B9 RxExtData5 Extended message User Data D6

0x01BA RxExtData6 Extended message User Data D7

0x01BB RxExtData7 Extended message User Data D8

0x01BC RxExtData8 Extended message User Data D9

0x01BD RxExtData9 Extended message User Data D10

0x01BE RxExtDataA Extended message User Data D11

0x01BF RxExtDataB Extended message User Data D12

0x01C0 RxExtDataC Extended message User Data D13

0x01C1 RxExtDataD Extended message User Data D14

0x01C2 RxExtCrc Extended message CRC

0x01C3 TxFrom0 Transmit “From” address high byte

0x01C4 TxFrom1 Transmit “From” address middle byte

0x01C5 TxFrom2 Transmit “From” address low byte

0x01C6 TxTo0 Transmit “To” address high byte

0x01C7 TxTo1 Transmit “To” address middle byte

0x01C8 TxTo2 Transmit “To” address low byte

TxExtRpt Transmit Control Flags

 _TxBroadcastBit 7 Broadcast

 _TxGroup 6 ALL-Link

 _TxAckBit 5 Acknowledge

0x01C9

 _TxExtMsgBit 4 Extended

Dev Guide, Chapter 9 Page 176

August 16, 2007 © 2005-2007 SmartLabs Technology

i2 Address i2 Register and Bits Description

 _TxMsgRpt 3,2 Hops Left

 _TxTotalRpt 1,0 Max Hops

0x01CA TxCmd1 Command byte 1

0x01CB TxCmd2 Command byte 2

0x01CC TxExtData0 Standard message CRC or Extended message User Data D1

0x01CD TxExtData1 Extended message User Data D2

0x01CE TxExtData2 Extended message User Data D3

0x01CF TxExtData3 Extended message User Data D4

0x01D0 TxExtData4 Extended message User Data D5

0x01D1 TxExtData5 Extended message User Data D6

0x01D2 TxExtData6 Extended message User Data D7

0x01D3 TxExtData7 Extended message User Data D8

0x01D4 TxExtData8 Extended message User Data D9

0x01D5 TxExtData9 Extended message User Data D10

0x01D6 TxExtDataA Extended message User Data D11

0x01D7 TxExtDataB Extended message User Data D12

0x01D8 TxExtDataC Extended message User Data D13

0x01D9 TxExtDataD Extended message User Data D14

0x01DA TxExtCrc Extended message CRC

NOTE: The following locations are the same in all devices

0x0200 VALID = ‘P’ if EEPROM is valid; 0x0200 is beginning of microcontroller
internal EEPROM

0x0201 ID_H High byte of ID

0x0202 ID_M Middle byte of ID

0x0203 ID_L Low byte of ID

0x0204 DEV_TYPE Device Category

0x0205 SUB_TYPE Device Subcategory

0x0206 REV Firmware Revision (MSN=Release, LSN=Ver)

0x0207 MEM_SIZE Mask for installed external memory:

 00000000=none
 00001111=4K
 01111111=32K
 11111111=64K

0x0210 ⇒
0x0211

APP_ADDR_TEST Address of range of application for verification test

Dev Guide, Chapter 9 Page 177

August 16, 2007 © 2005-2007 SmartLabs Technology

i2 Address i2 Register and Bits Description

0x0212 ⇒
0x0213

APP_LEN_TEST Length of range of application for verification test

0x0214 ⇒
0x0215

APP_CHECK_TEST Two’s complement checksum of range of application for
verification test

0x0216 ⇒
0x0217

APP_END Top of currently loaded SALad application. EEPROM is write-
protected from 0x0200 to the address contained here. Set
0x16B bit 7 to enable over-writing.

0x0230 TIMER_EVENT Entry point of SALad application for Timer Events

0x0237 STATIC_EVENT Entry point of SALad application for Static Events

0x0230 ⇒
0x02FF

SALad application code for fast execution; Microcontroller Internal EEPROM

0x0300 ⇒
0x7FFF

Slow SALad application code; External serial EEPROM

0x8000 ⇒
0xFFFF

If I2C_Addr bit 0 = 0, then 0x8000⇒0xFFFF is low region (0x0000⇒0x7FFF) of memory
in I2C device specified by upper 7 bits of I2C_Addr.

If I2C_Addr bit 0 = 1, then 0x8000⇒0xFFFF is high region (0x8000⇒0xFFFF) of memory
in I2C device specified by upper 7 bits of I2C_Addr.

Dev Guide, Chapter 9 Page 178

August 16, 2007 © 2005-2007 SmartLabs Technology

i1 Engine Memory Map
i1 Address i1 Register and Bits Description

0x0024 NTL_CNT Count for SALad block mode operations

0x0026 RD_H Remote Debugging breakpoint address MSB

0x0027 RD_L Remote Debugging breakpoint address LSB

0x0028 PC_H SALad Program Counter MSB

0x0029 PC_L SALad Program Counter LSB

0x002A DB_H Database Pointer MSB

0x002B DB_L Database Pointer LSB

0x002C NTL_SP_H Return Stack Pointer MSB

0x002D NTL_SP_L Return Stack Pointer LSB

0x0033 NTL_BUFFER Pointer to end of Timer Buffer, which begins at 0x0046. This
8-bit pointer defaults to 0x4D to allow room for 4 timers which
are 2 bytes each.

0x0034 NTL_RND Random Number Register

0x0035 NTL_REG_H High byte of Pointer to R0

0x0036 NTL_REG_L Low byte of Pointer to R0

0x0037 NTL_EVENT Event used to invoke SALad

0x0038 ⇒
0x003F

NTL_EVNT0-

NTL_EVNT7

Static Event Queue

0x0040 NTL_TIME_H Time-of-day alarm (minutes since midnight MSB)

0x0041 NTL_TIME_L Time-of-day alarm (minutes since midnight LSB)

0x0042 NTL_TICK Zero Crossing count down tick timer

0x0046 ⇒
NTL_BUFFER

NTL_TIMERS Timer Buffer; Starts at 0x0046

NTL_BUFFER
⇒ NTL_SP

NTL_REGS User Register Space

NTL_SP ⇒
0x006F

NTL_STACK SALad Return Stack

0x0074 TOKEN Currently executing SALad instruction token

NTL_STAT SALad Status Register

_DB_END 4 1=ALL-Link Database search reached end of database

_DB_PASS 3 1=ALL-Link Database search successful

_NTL_DZ 2 1=Divide by Zero

0x0075

_NTL_BO 1 1=Buffer Overrun

Dev Guide, Chapter 9 Page 179

August 16, 2007 © 2005-2007 SmartLabs Technology

i1 Address i1 Register and Bits Description

_NTL_CY 0 1=Carry from Math and Test operations

NTL_CONTROL SALad debugging control flags

_RD_HALT _RD_STEP

0 0 Normal execution

0 1 Animation (Trace)

1 0 Execution halted

_RD_STEP

_RD_HALT

7

6

1 1 Single step requested

0x0076

_RD_BREAK 5 0=Range Check Mode, 1=Breakpoint Mode

I_Control INSTEON result flags

_I_DebugRpt 6 1=Enable INSTEON Debug Report

_I_SendDirect 5 0=Send INSTEON from working buffer, 1=Send INSTEON
direct

_I_Transmit 4 1=Request To Send INSTEON

0x0142

_Repeat_On 1 1=Hops enabled

Control General system control flags

 _Reset 7 1=Request system reset

 _Watchdog 6 1=Request watchdog reset

 _PDI 2 1=Daughter card interrupt occurred and has been serviced

 _NoEventRpt 1 1=Inhibit static event report

0x0154

 _TAP_LAST 0 Last state of push button

0x0156 TAP_CNT Counts multiple SET Button taps

0x0157 Tick Incremented from 0⇒120 every second

0x0158 RTC_TIME_H Time since midnight in minutes (MSB, 0-1439)

0x0159 RTC_TIME_L Time since midnight in minutes (LSB, 0-1439)

0x015A RTC_YEAR Year (0-99)

0x015B RTC_MON Month (1-12)

0x015C RTC_DAY Day (1-31, month specific)

0x015D RTC_DOW Day-of-Week bitmap (0SSFTWTM)

0x015E RTC_HOUR Hour (0-23)

0x015F RTC_MIN Minute (0-59)

0x0160 RTC_SEC Second (0-59)

0x0164 X10_RX X10 Receive Buffer

Dev Guide, Chapter 9 Page 180

August 16, 2007 © 2005-2007 SmartLabs Technology

i1 Address i1 Register and Bits Description

0x0165 X10_TX X10 Transmit Buffer

X10_FLAGS X10 Flags

_X10_RTS 7 1=Request To Send

_X10_TXEX 6 1=Start extended transmit after current command (for internal
use)

_X10_EXTENDED 5 1=Extended transfer in progress (Tx or Rx)

_X10_COMBUF 4 1=Command, 0=Address (for internal use)

_X10_TXCOMMAND 3 1=Command, 0=Address for transmit

_X10_RXCOMMAND 2 1=Command, 0=Address for receive

_X10_VALID 1 1=X10 receive valid

0x0166

_X10_ENABLED 0 1=X10 active (for internal use)

0x0168 LED_MODE Bitmap defines flashing pattern for LED

1=On, 0=Off

0x0169 LED_TMR Duration of LED flashing in seconds

0x016A LED_DLY Period between each flash. Defaults to 5, which is 1/8 second
per bit in LED_MODE.

RS_CONTROL Control flags for serial command interpreter

_RS_ComReset 7

_RS_ComLimit2 6

_RS_ComLimit1 5

These are used for serial command time limit. This limits how
long a command remains active in SALad. This prevents the
serial engine from locking you out if SALad receives a corrupt
command (non-native serial command). Default time limit is
two seconds. To disable, clear bits 5⇒7.

_RS_AppLock 3 1=Enable overwriting of SALad code from 0x0200 to end of
SALad App given in 0x0216 and 0x0217

_RS_ComDisable 2 1=Core command processing disabled

_RS_ComActive 1 1=Command active for SALad processing (Non-native serial
command)

0x016B

_RS_02 0 1=0x02 received for command start

EventMask Mask to enable or disable events

_EM_BtnTap 7 1=enabled

_EM_BtnHold 6 1=enabled

_EM_BtnRel 5 1=enabled

_EM_TickTimer 4 1=enabled

_EM_Alarm 3 1=enabled

_EM_Midnight 2 1=enabled

0x016F

_EM_2AM 1 1=enabled

Dev Guide, Chapter 9 Page 181

August 16, 2007 © 2005-2007 SmartLabs Technology

i1 Address i1 Register and Bits Description

_EM_RX 0 1=enabled

0x017D I2C_ADDR Address of I2C device; bit 0 controls 0x8000 ⇒ 0xFFFF of flat
model, 1=hi region, 0=low region

0x01A0 DB_FLAGS Database search mode bitmap

0x01A1 DB_0 Database ID_H;

(INSTEON construction buffer) From Address_H; ignored for
INSTEON message construction

0x01A2 DB_1 Database ID_M;

(INSTEON construction buffer) From Address_M; ignored for
INSTEON message construction

0x01A3 DB_2 Database ID_L;

(INSTEON construction buffer) From Address_L; ignored for
INSTEON message construction

0x01A4 DB_3 Database Command 1;

(INSTEON construction buffer) To Address_H

0x01A5 DB_4 Database Command 2;

(INSTEON construction buffer) To Address_M

0x01A6 DB_5 Database Group Number;

(INSTEON construction buffer) To Address_L

0x01A7 DB_6 Database State;

(INSTEON construction buffer) Message Flags

0x01A8 DB_7 Message Command 1;

(INSTEON construction buffer) Command 1

0x01A9 DB_8 Message Command 2;

(INSTEON construction buffer) Command 2

0x01AA DB_9

0x01AB DB_A

0x01AC RxFrom0 Receive “From” address high byte

0x01AD RxFrom1 Receive “From” address middle byte

0x01AE RxFrom2 Receive “From” address low byte

0x01AF RxTo0 Receive “To” address high byte

0x01B0 RxTo1 Receive “To” address middle byte

0x01B1 RxTo2 Receive “To” address low byte

RxExtRpt Receive Control Flags

 _RxBroadcastBit 7 Broadcast Message

0x01B2

 _RxGroup 6 ALL-Link Message

Dev Guide, Chapter 9 Page 182

August 16, 2007 © 2005-2007 SmartLabs Technology

i1 Address i1 Register and Bits Description

 _RxAckBit 5 Acknowledge Message

 _RxExtMsgBit 4 Extended Message

0x01B3 RxCmd1 Command byte 1

0x01B4 RxCmd2 Command byte 2

0x01B5 RxExtDataD Standard message CRC or Extended message Data D

0x01B6 RxExtDataC Extended message Data C

0x01B7 RxExtDataB Extended message Data B

0x01B8 RxExtDataA Extended message Data A

0x01B9 RxExtData9 Extended message Data 9

0x01BA RxExtData8 Extended message Data 8

0x01BB RxExtData7 Extended message Data 7

0x01BC RxExtData6 Extended message Data 6

0x01BD RxExtData5 Extended message Data 5

0x01BE RxExtData4 Extended message Data 4

0x01BF RxExtData3 Extended message Data 3

0x01C0 RxExtData2 Extended message Data 2

0x01C1 RxExtData1 Extended message Data 1

0x01C2 RxExtData0 Extended message Data 0

0x01C3 RxExtCrc Extended message CRC

0x01C4 TxFrom0 Transmit “From” address high byte

0x01C5 TxFrom1 Transmit “From” address middle byte

0x01C6 TxFrom2 Transmit “From” address low byte

0x01C7 TxTo0 Transmit “To” address high byte

0x01C8 TxTo1 Transmit “To” address middle byte

0x01C9 TxTo2 Transmit “To” address low byte

TxExtRpt Transmit Control Flags

 _TxBroadcastBit 7 Broadcast

 _TxGroup 6 ALL-Link

 _TxAckBit 5 Acknowledge

0x01CA

 _TxExtMsgBit 4 Extended

0x01CB TxCmd1 Command byte 1

0x01CC TxCmd2 Command byte 2

Dev Guide, Chapter 9 Page 183

August 16, 2007 © 2005-2007 SmartLabs Technology

i1 Address i1 Register and Bits Description

0x01CD TxExtDataD Standard message CRC or Extended message Data D

0x01CE TxExtDataC Extended message Data C

0x01CF TxExtDataB Extended message Data B

0x01D0 TxExtDataA Extended message Data A

0x01D1 TxExtData9 Extended message Data 9

0x01D2 TxExtData8 Extended message Data 8

0x01D3 TxExtData7 Extended message Data 7

0x01D4 TxExtData6 Extended message Data 6

0x01D5 TxExtData5 Extended message Data 5

0x01D6 TxExtData4 Extended message Data 4

0x01D7 TxExtData3 Extended message Data 3

0x01D8 TxExtData2 Extended message Data 2

0x01D9 TxExtData1 Extended message Data 1

0x01DA TxExtData0 Extended message Data 0

0x01DB TxExtCrc Extended message CRC

RS_ERROR RS232 Error register

_RX_Empty 7 Receive buffer empty

_Rx_Full 6 Receive buffer full

_RX_OF 5 Receive buffer overflow

_RX_Busy 4 Receive busy

_TX_Empty 3 Transmit buffer empty

_TX_Full 2 Transmit buffer full

_TX_OF 1 Transmit buffer overflow

0x01DD

_TX_Busy 0 Transmit busy

0x01E8 ⇒
0x01EF

RX_Buffer RS232 receive buffer

0x01DF RX_PTR Points to next open slot in serial receive buffer, if it contains
0xE8, the buffer is empty

0x0200 VALID = ‘P’ if EEPROM is valid; 0x0200 is beginning of microcontroller
internal EEPROM

0x0201 ID_H High byte of ID

0x0202 ID_M Middle byte of ID

0x0203 ID_L Low byte of ID

0x0204 DEV_TYPE Device Category

Dev Guide, Chapter 9 Page 184

August 16, 2007 © 2005-2007 SmartLabs Technology

i1 Address i1 Register and Bits Description

0x0205 SUB_TYPE Device Subcategory

0x0206 REV Firmware Revision (MSN=Release, LSN=Ver)

0x0207 MEM_SIZE Mask for installed external memory:

 00000000=none
 00001111=4K
 01111111=32K
 11111111=64K

0x0210 ⇒
0x0211

APP_ADDR_TEST Address of range of application for verification test

0x0212 ⇒
0x0213

APP_LEN_TEST Length of range of application for verification test

0x0214 ⇒
0x0215

APP_CHECK_TEST Two’s complement checksum of range of application for
verification test

0x0216 ⇒
0x0217

APP_END Top of currently loaded SALad application. EEPROM is write-
protected from 0x0200 to the address contained here. Set
0x16B bit 7 to enable over-writing.

0x0230 TIMER_EVENT Entry point of SALad application for Timer Events

0x0237 STATIC_EVENT Entry point of SALad application for Static Events

0x0230 ⇒
0x02FF

SALad application code for fast execution; Microcontroller Internal EEPROM

0x0300 ⇒
0x7FFF

Slow SALad application code; External serial EEPROM

0x8000 ⇒
0xFFFF

If I2C_Addr bit 0 = 0, then 0x8000⇒0xFFFF is low region (0x0000⇒0x7FFF) of memory
in I2C device specified by upper 7 bits of I2C_Addr.

If I2C_Addr bit 0 = 1, then 0x8000⇒0xFFFF is high region (0x8000⇒0xFFFF) of memory
in I2C device specified by upper 7 bits of I2C_Addr.

Dev Guide, Chapter 9 Page 185

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Events
IBIOS events are all Static Events. If a SALad application is present, all of these
Static Events are sent to a SALad event handler, like the one in the SALad coreApp
Program272, which comes pre-installed in The SmartLabs PowerLinc Controller28. In
fact, some of these events, such as receiving INSTEON or X10 messages, require
SALad handling in order to guarantee realtime processing. Timer Events also occur,
but these must be handled by a SALad application, so they are documented
elsewhere (see SALad Timers273).

Whenever an IBIOS Event occurs (assuming you have not disabled event reporting),
IBIOS will notify your PC by sending an Event Report (0x45) IBIOS Serial Command.
See the IBIOS Serial Command Summary Table197 for more information about event
reporting.

You can force an event to fire under program control by sending a Simulated Event
IBIOS Command to the PLC. See the IBIOS Serial Command Summary Table197
below for more information, and the IBIOS Simulated Event209 section for an
example.

Eight events (0x0A through 0x11) can be prevented from occurring by clearing
individual bits in the EventMask register at 0x016F (see Flat Memory Map170).
Initialization code sets EventMask to 0xFF at power up, so all events are enabled by
default. Bit 7 (the MSb) of EventMask controls event 0x0A, down through bit 0 (the
LSb), which corresponds to event 0x11.

IBIOS Event Summary Table
This table lists all currently defined Static Event handles.

Handle
Gives the number used by IBIOS to report the Event. coreApp means that the
Event is only fired by the SALad coreApp Program272, revision 12 (June, 2006) or
later, or an equivalent SALad application.

Name
Gives the name of the Event as used in software.

Note
See the item with the same number in IBIOS Event Details187 for more
information.

Description
Briefly describes what happened to fire the event.

IBIOS Static Events

Handle Name Note Description

0x00 EVNT_INIT 1 SALad initialization code started (automatic at power-up).

0x01 EVNT_IRX_MYMSG 2 Received the first message in a hop sequence addressed
to me.

0x02 EVNT_IRX_MSG 2 Received the first message in a hop sequence not
addressed to me.

Dev Guide, Chapter 9 Page 186

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Static Events

Handle Name Note Description

0x03 EVNT_IRX_PKT 2 Received a duplicate message in a hop sequence whether
or not addressed to me (may occur after an 0x01 or 0x02
event).

0x04 EVNT_ITX_ACK 3 Received expected Acknowledgement message after Direct
message sent.

0x05 EVNT_ITX_NACK 3 Did not receive expected Acknowledgement message after
Direct message sent using 5 retries.

0x06 EVNT_IRX_BADID 4 Received a message with an unknown To Address. The
message was censored by replacing its contents with
0xFFs, except for the From Address and To Address LSBs).

0x07 EVNT_IRX_ENROLL 5 Received an INSTEON message containing an enrollment-
specific INSTEON Command. The INSTEON message was
received after a SALad Enroll instruction was executed
while the SET Button was being held down, and before a
four-minute timeout expired. The received message’s
contents are in plaintext (i.e. not censored by masking
with 0xFFs).

0x08 EVNT_XRX_MSG 6 Received an X10 byte.

0x09 EVNT_XRX_XMSG 6 Received an X10 Extended Message byte.

0x0A EVNT_BTN_TAP 7 The SET Button was tapped for the first time.

0x0B EVNT_BTN_HOLD 7 The SET Button is being held down.

0x0C EVNT_BTN_REL 7 The SET Button is no longer being tapped or held down.
The number of taps is in the TAP_CNT register at 0x0156.

0x0D EVNT_TICK 8 Tick counter has expired (NTL_TICK)

0x0E EVNT_ALARM 8 Hours and minutes equals current time

0x0F EVNT_MIDNIGHT 8 Event occurs every midnight

0x10 EVNT_2AM 8 Event occurs every 2:00 am

0x11 EVNT_RX 9 Received a serial byte for SALad processing

0x12 EVNT_SRX_COM 9 Received an unknown IBIOS Serial Command

0x13 EVNT_DAUGHTER 10 Received interrupt from daughter card

0x14 EVNT_LOAD_ON 11 Load turned on

0x15 EVNT_LOAD_OFF 11 Load turned off

0x32
coreApp

EVNT_INIT_DB_CLR 12 Reinitialize RAM and clear the ALL-Link Database

0x33
coreApp

EVNT_INIT_DB_NO_CLR 12 Reinitialize RAM but do not clear the ALL-Link Database

0x41
coreApp

EVNT_LINK 13 Enter ALL-Linking mode for a single device

0x42 EVNT_MULTI_LINK 14 Enter ALL-Linking mode for multiple devices

Dev Guide, Chapter 9 Page 187

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Static Events

Handle Name Note Description

coreApp

0x43
coreApp

EVNT_UNLINK 15 Enter Unlinking mode for a single device

0x44
coreApp

EVNT_MULTI_UNLINK 16 Enter Unlinking mode for multiple devices

0x45
coreApp

EVNT_END_LINK 17 End ALL-Linking mode

0x46
coreApp

EVNT_CONTINUE_LINK 18 Continue ALL-Linking mode for 4 additional minutes

IBIOS Event Details
The numbers below refer to the Note column in the above IBIOS Event Summary
Table185. [coreApp] means that the Event is only fired by the SALad coreApp
Program272, revision 12 (June, 2006) or later, or an equivalent SALad application.

1. EVNT_INIT (0x00)

When power is first applied, IBIOS runs its initialization code, then it checks for
the existence of a valid SALad application program. If there is one, IBIOS fires
this event and then starts SALad with this event in the event queue.

You can force a power-on reset in software by setting bit 7 (_Reset) of the
Control register at 0x0154 to one (see Flat Memory Map170).

2. EVNT_IRX_MYMSG (0x01), EVNT_IRX_MSG (0x02), EVNT_IRX_PKT
(0x03)

When IBIOS first receives a new INSTEON message that has not been seen
before, the message may be arriving on its first hop, or it may be arriving on a
subsequent hop, depending on the INSTEON environment. If the To Address of
this new message matches the 3-byte IBIOS ID burned in at the factory, then the
new message is to me, and an EVNT_IRX_MYMSG (0x01) event will fire. If
the new message is not to me, then an EVNT_IRX_MSG (0x02) event will fire
instead. If the new message was received before its last hop, then the same
message may be received again on subsequent hops. Whenever this happens an
EVNT_IRX_PKT (0x03) event will fire whether the duplicate message is to me
or not to me.

After any of these events fire, IBIOS will use a SALad application like the SALad
coreApp Program272 to send an INSTEON Received (0x4F) IBIOS Serial Command
(see IBIOS Serial Command Summary Table197).

3. EVNT_IRX_ACK (0x04), EVNT_IRX_NACK (0x05)

After IBIOS sends a Direct INSTEON message, it expects the addressee to
respond with an INSTEON Acknowledgement message. If IBIOS receives the
Acknowledgement message as expected, it fires an EVNT_IRX_ACK (0x04)
event. On the other hand, if the expected Acknowledgement message is not

Dev Guide, Chapter 9 Page 188

August 16, 2007 © 2005-2007 SmartLabs Technology

received, IBIOS will automatically retry sending the Direct message again. If
after five retries the addressee still does not respond with an Acknowledgement
message, IBIOS will fire an EVNT_IRX_NACK (0x05) event. One or the other
(but not both) of these events is guaranteed to fire after sending a Direct
message, although the EVNT_IRX_NACK (0x05) event may not fire for a long
time due to the retries.

After either of these events fires, IBIOS will use a SALad application like the
SALad coreApp Program272 to send an INSTEON Received (0x4F) IBIOS Serial
Command (see IBIOS Serial Command Summary Table197).

4. EVNT_IRX_BADID (0x06)

If the To Address of an incoming INSTEON message does not match the 3-byte
IBIOS ID burned in at the factory (i.e. the message is not to me), and the To
Address does not match any of the IDs in IBIOS’s INSTEON ALL-Link Database101,
then for security reasons, the message is censored. A censored INSTEON
message will have all of its data bytes replaced with 0xFFs, except for the low
bytes of the From Address and the To Address. See Masking Non-linked Network
Traffic112 for more information on INSTEON Security112.

After this event fires, IBIOS will use a SALad application like the SALad coreApp
Program272 to send an INSTEON Received (0x4F) IBIOS Serial Command (see
IBIOS Serial Command Summary Table197).

5. EVNT_IRX_ENROLL (0x07)

This event supports INSTEON Device ALL-Linking93, also known as enrollment,
that is being handled by a suitable SALad application. The event may only fire
after a SALad Enroll instruction (see SALad Instruction Summary Table281)
executes during the time that the SET Button is held down, and before a four-
minute timer has expired. If during that time IBIOS sends or receives an
INSTEON Broadcast message containing an INSTEON SET Button Pressed
Responder (0x01) or SET Button Pressed Controller (0x02) Command or an
INSTEON Direct message containing an INSTEON Assign to ALL-Link Group
(0x01) or Delete from ALL-Link Group (0x02) Command (see INSTEON Command
Set Tables124), the event will fire. The received message that triggered the event
will not be censored by replacing its contents with 0xFFs, so that the SALad
program can enroll the INSTEON device that sent the message in the INSTEON
ALL-Link Database101.

Requiring that the SET Button be pushed enforces INSTEON Security112 by
requiring Physical Possession of Devices112.

After this event fires, IBIOS will send an INSTEON Received (0x4F) IBIOS Serial
Command (see IBIOS Serial Command Summary Table197).

6. EVNT_XRX_MSG (0x08), EVNT_XRX_XMSG (0x09)

These events occur when IBIOS receives an X10 byte over the powerline. When
IBIOS receives a new X10 byte, it fires an EVNT_XRX_MSG (0x08) event. If
IBIOS determines that subsequent received X10 bytes are part of an Extended
X10 message, then it will fire an EVNT_XRX_XMSG (0x09) event for those
bytes. After IBIOS detects the end of the Extended X10 message (three 0x00

Dev Guide, Chapter 9 Page 189

August 16, 2007 © 2005-2007 SmartLabs Technology

bytes in succession), or else if a timeout expires, IBIOS will revert to firing an
EVNT_XRX_MSG (0x08) event for the next X10 byte it receives.

After either of these events occurs, IBIOS will use a SALad application like the
SALad coreApp Program272 to send an X10 Byte Received (0x4A) IBIOS Serial
Command (see IBIOS Serial Command Summary Table197).

7. EVNT_BTN_TAP (0x0A), EVNT_BTN_HOLD (0x0B), EVNT_BTN_REL
(0x0C)

These events fire when the SET Button is pushed in various ways. A Button Tap
occurs when the user pushes the SET Button and then lets up less than 350
milliseconds (350 ms) later. A Button Hold occurs when the user pushes the SET
Button and then lets up more than 350 ms later.

The first time IBIOS detects a Button Tap, it fires an EVNT_BTN_TAP (0x0A)
event. If there are more Button Taps following the first one, with less than 350
ms between each one, then IBIOS does not fire an event, but it does count the
number of Button Taps. When more than 350 ms elapses after a Button Tap,
IBIOS fires an EVNT_BTN_REL (0x0C) event to indicate the SET Button has
been released. At that time, you can inspect the TAP_CNT register at 0x0156
(see Flat Memory Map170) to see how many Button Taps occurred before the
release.

Whenever IBIOS detects a Button Hold it fires an EVNT_BTN_HOLD (0x0B)
event, then when it detects that the button has been released it fires an
EVNT_BTN_REL (0x0C) event.

Note that a Button Hold can follow some number of Button Taps, in which case
events EVNT_BTN_TAP (0x0A), EVNT_BTN_HOLD (0x0B), and
EVNT_BTN_REL (0x0C) would occur in that order. Inspect TAP_CNT after the
EVNT_BTN_REL (0x0C) event to see how many Button Taps there were.

8. EVNT_TICK (0x0D), EVNT_ALARM (0x0E), EVNT_MIDNIGHT (0x0F),
EVNT_2AM (0x10)

These events depend on the IBIOS Software Realtime Clock/Calendar212 (RTC),
which counts powerline zero crossings (120 per second) for timing. The Software
RTC must be set by a SALad program or by IBIOS Serial Commands upon power
up for EVNT_ALARM (0x0E), EVNT_MIDNIGHT (0x0F), EVNT_2AM (0x10)
to work properly.

You can use EVNT_TICK (0x0D) to measure short time intervals, ranging from
8.333 milliseconds (ms) up to 2.125 seconds. Each tick is one powerline zero
crossing, which is 1/120 second, or 8.333 ms. To cause this event to fire, load a
value from 1 to 255 into the NTL_TICK register at 0x0042 (see Flat Memory
Map170). After that number of ticks, IBIOS will fire this event one time only. You
can disable this event at any time by loading 0x00 into NTL_TICK.

Registers RTC _TIME_H and RTC _TIME_L at 0x0158 and 0x0159 contain a 16-bit
value ranging from 0 to 1439 that counts the number of minutes that has elapsed
since midnight. You can cause an EVNT_ALARM (0x0E) event to fire by loading
a valid minutes-from-midnight value into the NTL_TIME_H and NTL _TIME_H
registers at 0x0040 and 0x0041. When the value in RTC_TIME_H,L matches your

Dev Guide, Chapter 9 Page 190

August 16, 2007 © 2005-2007 SmartLabs Technology

value in NTL_TIME_H,L, IBIOS will fire EVNT_ALARM (0x0E). The value you
loaded into NTL_TIME_H,L is not altered when the event fires, so the event will
fire every day. However, if you load an invalid value (greater than 1439) into
NTL_TIME_H,L, then the event will never fire.

The EVNT_MIDNIGHT (0x0F) and EVNT_2AM (0x10) events fire at midnight
and at 2:00 am, as you would expect.

9. EVNT_RX (0x11), EVNT_SRX_COM (0x12)

These events allow the number of IBIOS Serial Commands196 to be extended. All
IBIOS Serial Commands begin with 0x02, followed by the number of the
Command. If IBIOS receives a Serial Command Number outside the range 0x40
through 0x48 (see IBIOS Serial Command Summary Table197), it will fire the
EVNT_SRX_COM (0x12) event, then start a two-second timer. Thereafter,
every time IBIOS receives a serial byte, it will fire the EVNT_RX_COM (0x11)
event and restart the two-second timer. If the two-second timer expires, IBIOS
will send a serial NAK (ASCII 0x15) and stop firing EVNT_RX_COM (0x11)
events.

When you are finished parsing the incoming IBIOS Serial Command, clear the
two-second timer yourself by clearing bits 5 and 6, _RSComLimit1 and
_RSComLimit, in the RS_CONTROL register at 0x016B (see Flat Memory Map170).
If you want more time, you can get another two seconds by setting the same two
bits to one.

10. EVNT_DAUGHTER (0x13)

IBIOS fires this event when it detects that port pin RB6 on the microprocessor
went low. Normally this is caused by an attached daughter card requesting an
interrupt.

11. EVNT_LOAD_ON (0x14), EVNT_LOAD_OFF (0x15)

These events are for monitoring electrical loads connected to the INSTEON
device. They will fire in response to the state of current-sensing hardware, and
so are implementation-specific. Contact the INSTEON Developer’s Forum or
email sdk@insteon.net for more information.

12. EVNT_INIT_DB_CLR (0x32), EVNT_ INIT_NO_DB_CLR (0x33) [coreApp]

These events can only be fired under program control, by sending the Simulated
Event IBIOS Command to the PLC. (Send 0x02 0x47 0x32 0x00, or 0x02 0x47
0x33 0x00 respectively.) See the IBIOS Serial Command Summary Table197
below for more information.

The action of these events is similar to EVNT_INIT (0x00), except the realtime
clock is not reset.

13. EVNT_LINK (0x41) [coreApp]

This event fires when the user pushes the SET Button for 10 seconds to put the
PLC into ALL-Linking mode.

14. EVNT_MULTI_LINK (0x42) [coreApp]

mailto:sdk@insteon.net�

Dev Guide, Chapter 9 Page 191

August 16, 2007 © 2005-2007 SmartLabs Technology

This event fires when the user pushes the SET Button for 10 seconds to put the
PLC into ALL-Linking mode, and then taps the SET Button to enter multilinking
mode. Multilinking allows the user to ALL-Link more than one device without
having to push the SET Button again for 10 seconds.

15. EVNT_UNLINK (0x43) [coreApp]

This event fires when the user pushes the SET Button for 10 seconds to put the
PLC into ALL-Linking mode, and then pushes the SET Button a second time for
another 10 seconds to enter unlinking mode.

16. EVNT_MULTI_UNLINK (0x44) [coreApp]

This fires when the user pushes the SET Button for 10 seconds to put the PLC
into ALL-Linking mode, pushes the SET Button a second time for another 10
seconds to enter unlinking mode, and then taps the SET Button to enter multi-
unlinking mode. Multi-unlinking allows the user to unlink more than one device
without having to push the SET Button again for 10 seconds.

17. EVNT_END_LINK (0x45) [coreApp]

This event fires when the user taps the SET Button to end ALL-Link mode, or else
when the four-minute ALL-Link mode timer automatically terminates ALL-Link
mode.

18. EVNT_CONTINUE_LINK (0x46) [coreApp]

This event fires when the user ALL-Links to an INSTEON device while in
multilinking mode, or else when the user unlinks a device while in multi-unlinking
mode.

Dev Guide, Chapter 9 Page 192

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Serial Communication Protocol
and Settings
In This Section

IBIOS Serial Communication Protocol193
Gives the protocol for communicating serially with the PLC.

IBIOS RS232 Port Settings193
Shows how to set up your PC’s COM (RS232) port to talk to an RS232 PLC.

IBIOS USB Serial Interface194
Describes how to use your PC’s USB port to talk to a USB PLC.

Dev Guide, Chapter 9 Page 193

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Serial Communication Protocol
All IBIOS Serial Commands start with ASCII 0x02 (STX, Start-of-Text) followed by
the Serial Command Number (see IBIOS Serial Commands196). What data follows
the Command depends on the Command syntax (see IBIOS Serial Command
Summary Table197).

IBIOS will respond with an echo of the 0x02 and Command Number followed by any
data that the Command returns.

If IBIOS is responding to a Serial Command that it received, the last byte it sends
will be ASCII 0x06 (ACK, Acknowledge).

(S: and R: denote serial data you Send to or Receive from IBIOS, respectively.)

S: 0x02 <Command Number> <parameters>

R: 0x02 <Command Number> <any returned data> 0x06 (ACK)

If IBIOS is not ready, it will respond with an echo of the 0x02 and the Serial
Command Number followed by ASCII 0x15 (NAK, Negative Acknowledge).

S: 0x02 <Command Number> <parameters>

R: 0x15 (NAK)

If you receive 0x15 (NAK), resend your Serial Command.

IBIOS RS232 Port Settings
To communicate to an RS232 PLC, set your PC’s COM port as follows:

Setting Value

Baud Rate 4800

Data Bits 8

Parity N

Stop Bits 1

Hardware Flow Control None

Software Flow Control None

Dev Guide, Chapter 9 Page 194

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS USB Serial Interface
The interface to a USB PLC is a simple USB wrapper around the IBIOS Serial
Communication Protocol193, implemented using the Human Interface Device (HID)
interface. See, for example, http://www.lvr.com/hidpage.htm for more information
on using HID to implement a USB interface.

SmartLabs’ VendorID and ProductID are listed at http://www.linux-usb.org/usb.ids.
The ProductID for the USB PowerLinc™ V2 Controller is 0x0004.

When communicating to a USB PLC, send the same Commands as given in IBIOS
Serial Commands196, except use 8-byte USB packets.

The PLC will set the most significant bit of the Count byte to indicate Clear-to-Send,
i.e. that the PLC is ready to receive more data.

For example, to send the IBIOS Serial Command 0x48 (Get PLC Version), send the
following 8-byte packet (data bytes are bold):

HID USB 8-byte Packet

Count Data

0x02 0x02 0x48 0x00 0x00 0x00 0x00 0x00

The PLC will reply with data similar to the following (data bytes are bold; 0x80 in the
count indicates that the PLC is ready to receive more data):

HID USB 8-byte Packet

Count Data

0x80 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x01 0x02 0x00 0x00 0x00 0x00 0x00 0x00

0x03 0x48 0xff 0xff 0x00 0x00 0x00 0x00

0x03 0xff 0x04 0x00 0x00 0x00 0x00 0x00

0x02 0x23 0x06 0x00 0x00 0x00 0x00 0x00

http://www.lvr.com/hidpage.htm�
http://www.linux-usb.org/usb.ids�

Dev Guide, Chapter 9 Page 195

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Serial Commands
The IBIOS Serial Command set is the basic interface between a computing device
such as a PC or dedicated home controller and a serially connected INSTEON Bridge
device such as The SmartLabs PowerLinc Controller28 (PLC). For example, a PC
connected to a PLC could use IBIOS Serial Commands to send and receive INSTEON
or X10 messages directly, or it could download and debug a SALad program that
runs on the PLC.

IBIOS Serial Commands also allow indirect access, via INSTEON messages, to other
INSTEON devices on the network. For instance, you could upgrade the capabilities of
SALad-enabled INSTEON devices by remotely installing and debugging new SALad
applications in them.

Some of the IBIOS Serial Commands require a SALad application such as the SALad
coreApp Program272 to be running in order to ensure realtime execution.

In This Section

IBIOS Serial Command Table196
Describes all of the IBIOS Serial Commands in an IBIOS Serial Command
Summary Table197 and gives IBIOS Serial Command Details198.

IBIOS Serial Command Examples201
Gives examples of how to use the IBIOS Serial Commands.

Dev Guide, Chapter 9 Page 196

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Serial Command Table
IBIOS Serial Command Parameters

This is what the common parameters shown in the Format column of the IBIOS
Serial Command Summary Table197 mean. Parameters not listed here should be
understood from the context.

MSB means Most-Significant Byte, LSB means Least-Significant Byte, MSb means
Most-Significant bit.

Parameter Description

Address High (Low) MSB (LSB) of a 16-bit address

Length High (Low) MSB (LSB) of a 16-bit length of a data block

Checksum High (Low) MSB (LSB) of a 16-bit value calculated by summing all the bytes in a
data block specified in an IBIOS Serial Command, then taking the two’s
complement

Data Block of data bytes

Event Handle 8-bit number indicating the event that fired (see IBIOS Events185)

Timer Value 8-bit time value:
1 to 127 seconds, if the MSb (bit 7) is 0 (clear)
1 to 127 minutes, if the MSb (bit 7) is 1 (set)

Dev Guide, Chapter 9 Page 197

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Serial Command Summary Table
This table lists all of the IBIOS Serial Commands supported by the PLC.

Code
Gives the hexadecimal number of the IBIOS Serial Command. SALad means
that the Command is only applicable if a suitable SALad application, such as the
SALad coreApp Program272, is running.

Command
Gives the name of the IBIOS Serial Command.

Note
See the item with the same number in IBIOS Serial Command Details198 for more
information.

Format
Gives the syntax of the IBIOS Serial Command, including any parameters.

S: and R: denote serial data you Send to or Receive from IBIOS, respectively. See
IBIOS Serial Communication Protocol193 for more information.

All IBIOS Serial Commands start with ASCII 0x02 (STX, Start-of-Text) followed by
the Serial Command Number. See IBIOS Serial Command Parameters196, above, for
the meaning of the Command parameters.

All fields in this table contain only one byte, except for those with ‘…’ (e.g. <Data…>,
or <Message…>), which contain a variable number of bytes.

IBIOS Serial Commands

Code Command Note Format

0x40

Download

(IBIOS
receives data
from you)

1 S: 0x02 0x40 <Address High> <Address Low> <Length High> <Length
Low> <Checksum High> <Checksum Low> <Data…>

R: 0x02 0x40 <Address High> <Address Low> <Length High> <Length
Low> <0x06 (ACK) | 0x15 (NAK)>

0x41

SALad

Fixed-length
Message

2 R: 0x02 0x41 <Length> <Message…>

NOTE: <Message…> can contain unrestricted data, such as embedded
INSTEON or X10 messages.

0x42

Upload

(IBIOS sends
data to you)

1 S: 0x02 0x42 <Address High> <Address Low> <Length High> <Length
Low>

R: 0x02 0x42 <Address High> <Address Low> <Length High> <Length
Low> <Data…> <Checksum High> <Checksum Low> 0x06

0x43

SALad

Variable-
length Text
Message

2 R: 0x02 0x43 <Message…> 0x03 (ASCII ETX, End-of-Text)

NOTE: <Message…> must not contain 0x03 (ETX, End-of-Text).

0x44 Get
Checksum

3 S: 0x02 0x44 <Address High> <Address Low> <Length High> <Length
Low>

R: 0x02 0x44 <Address High> <Address Low> <Length High> <Length
Low> <Checksum High> <Checksum Low> 0x06

0x45 Event Report 4 R: 0x02 0x45 <Event Handle>

Dev Guide, Chapter 9 Page 198

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Serial Commands

Code Command Note Format

0x46 Mask 5 S: 0x02 0x46 <Address High> <Address Low> <OR mask> <AND
mask>

R: 0x02 0x46 <Address High> <Address Low> <OR mask> <AND
mask> 0x06

0x47 Simulated
Event

6 S: 0x02 0x47 <Event Handle> <Timer Value>

R: 0x02 0x47 <Event Handle> <Timer Value> 0x06

0x48 Get Version 7 S: 0x02 0x48

R: 0x02 0x48 <INSTEON Address High> <INSTEON Address Middle>
<INSTEON Address Low> <Device Type High> <Device Type Low>
<Firmware Revision> 0x06

0x49

SALad

Debug
Report

8 R: 0x02 0x49 <Next SALad instruction to execute Address High> <Next
SALad instruction to execute Address Low>

0x4A

SALad

X10 Byte
Received

9 R: 0x02 0x4A <0x00 (X10 Address) | 0x01 (X10 Command)> <X10
Byte>

0x4F

SALad

INSTEON
Message
Received

10 R: 0x02 0x4F <Event Handle (0x01-0x07)> <INSTEON message (9 or
23 bytes)>

IBIOS Serial Command Details
The numbers below refer to the Note column in the above IBIOS Serial Command
Summary Table197.

1. Download (0x40), Upload (0x42)

Use these Commands to write Download (0x40) or read Upload (0x42)
IBIOS’s memory. The Flat Memory Map170 lists all of the memory locations that
you can access, and defines what the contents are.

You can neither read nor write the firmware in IBIOS’s EPROM. The
microprocessor’s program counter (appearing at locations 0x0002, 0x0082,
0x0102, and 0x0182) is write-protected, as is the Enrollment Timer at 0x016D.
No harm will occur if you attempt to read or write address locations where there
is no memory, but the results will be indeterminate.

See item 3, Get Checksum (0x44), for IBIOS’s method of calculating
checksums (two’s complement of a 16-bit sum). The checksum covers all the
bytes in the <Address High>, <Address Low>, <Length High>, <Length Low>,
and <Data…> fields only.

After downloading, even if you receive 0x06 (ACK), you should immediately issue
a Get Checksum (0x44) Serial Command to verify that IBIOS wrote the data to
memory correctly.

If you are setting or clearing individual flag bits in a register, use the Mask

Dev Guide, Chapter 9 Page 199

August 16, 2007 © 2005-2007 SmartLabs Technology

(0x46) Command to avoid affecting flags you are not changing.

2. Fixed-length Message (0x41), Variable-length Text Message (0x43)

These Serial Commands require a SALad application such as the SALad coreApp
Program272 to be running. A SALad program can send up to 255 bytes of
unrestricted (ASCII or binary) data to the host using a Fixed-length Message
(0x41) Serial Command containing a length byte.

To send simple text messages without a length restriction, a SALad program can
use the Variable-length Text Message (0x43) Serial Command. This
Command does not use a length byte. Instead, it uses an ASCII 0x03 (ETX, End-
of-Text) byte to delimit the end of the ASCII text message, so the text message
must not contain an embedded ETX character before the actual end of the
message.

3. Get Checksum (0x44)

IBIOS calculates checksums by summing up all of the bytes in the given range
into a 16-bit register, then taking a two’s complement of the 16-bit sum. You
can take a two’s complement by inverting all 16 bits and then incrementing by
one, or else you can just subtract the 16-bit value from 0x0000.

4. Event Report (0x45)

IBIOS sends this Serial Command whenever one of the IBIOS Events185 given in
the IBIOS Event Summary Table185 fires.

You can prevent IBIOS from sending Event Reports by setting bit 1,
_NoEventRpt, in the Control register at 0x0154 to one (see Flat Memory Map170).
IBIOS clears this flag to zero at power up, so Event Reports are enabled by
default.

5. Mask (0x46)

Use this Serial Command to set or clear individual flag bits in a register without
affecting flags you are not changing.

To set one or more bits in a register to one, set the corresponding bits in the OR
Mask to one. Bits set to zero in the OR Mask will not change the corresponding
bits in the register.

To clear one or more bits in a register to zero, set the corresponding bits in the
AND Mask to zero. Bits set to one in the AND Mask will not change the
corresponding bits in the register.

6. Simulated Event (0x47)

You can force IBIOS to fire one of the Static Events in the IBIOS Event Summary
Table185 with this Serial Command by sending the desired <Event Handle>
number with a <Timer Value> of zero. You cannot use this Serial Command to
fire an EVNT_INIT (0x00) initialization event, but there is an alternate method
to force a power-on reset (see IBIOS Event Details187, Note 1).

Dev Guide, Chapter 9 Page 200

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS will fire Timer Events, but unless you are running a SALad program with
Timer Event handling code, nothing will happen. See SALad Timers273 for an
explanation of SALad Timer events. To simulate a Timer Event, set <Event
Handle> to the Timer Index number of the SALad handler for the timer, and set
<Timer Value> to a non-zero value denoting how much time should elapse
before the Timer Event fires. If the high bit of <Timer Value> is 0, then the time
will be 1 to 127 seconds; if the high bit is 1, then the time will be 1 to 127
minutes.

7. Get Version (0x48)

This Serial Command retrieves the 3-byte INSTEON ID number (see Device
Addresses41), a 1-byte DevCat, a 1-byte SubCat, and a 1-byte reserved field
formerly used for a Firmware Version (see INSTEON Device Categories83) that
were burned in at the factory. This information is read-only.

8. Debug Report (0x49)

You can remotely debug a SALad program with this Serial Command. This is the
underlying mechanism used by the IDE debugger described in the SALad
Integrated Development Environment User’s Guide287.

See the IBIOS Remote Debugging215 section for details on how IBIOS remote
debugging works. When remote debugging is enabled, IBIOS will use this Serial
Command to report the location of the next SALad instruction to be executed.

9. X10 Byte Received (0x4A)

This Serial Command requires a SALad application such as the SALad coreApp
Program272 to be running. After IBIOS fires an EVNT_XRX_MSG (0x08) or
EVNT_XRX_XMSG (0x09) (see IBIOS Event Details187), The SALad app will
report the received X10 byte by sending this Serial Command.

The byte following the 0x4A Command Number tells whether the received X10
byte is an X10 Address (the byte is 0x00) or X10 Command (the byte is 0x01).
If you are receiving an X10 Extended Message, then this byte is irrelevant.

See IBIOS X10 Signaling213 for more information.

10. INSTEON Message Received (0x4F)

This Serial Command requires a SALad application such as the SALad coreApp
Program272 to be running. After IBIOS fires any of the events 0x01 through
0x07 (see IBIOS Event Details187), The SALad app will report the INSTEON
message received by sending this Serial Command.

If the IBIOS event is 0x05 (EVNT_ITX_NACK), then IBIOS did not receive an
expected INSTEON Acknowledgement message after five retries. In that case,
this IBIOS Command will not contain an <INSTEON message (9 or 23 bytes)>
field—instead, you will only receive the three bytes 0x02 0x4F 0x05.

To determine if the INSTEON message’s length is 9 bytes (Standard) or 23 bytes
(Extended), inspect the message’s Extended Message Flag43.

Dev Guide, Chapter 9 Page 201

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Serial Command Examples
This section contains examples showing how to use various IBIOS Serial Commands
described in the IBIOS Serial Command Table196 above. The examples assume you
are serially connected to The SmartLabs PowerLinc Controller28 (PLC) running the
default SALad coreApp Program272.

In This Section

IBIOS Get Version202
Get the INSTEON Address, Device Type, and Firmware Revision of the PLC.

IBIOS Read and Write Memory203
Read and write memory in the PLC based on the flat memory map.

IBIOS Get Checksum on Region of Memory204
Get the checksum over a region of PLC memory based on the flat memory map.

IBIOS Send INSTEON205
Send an INSTEON Command.

IBIOS Receive INSTEON206
Receive an INSTEON Command.

IBIOS Send X10207
Send an X10 Command.

IBIOS Simulated Event209
Fire an IBIOS Event and start the SALad Engine with the event.

Dev Guide, Chapter 9 Page 202

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Get Version

Summary
In this example we will use the Get Version (0x48) IBIOS Serial Command to get
the PLC’s 3-byte INSTEON ID number (see Device Addresses41), a 1-byte DevCat, a
1-byte SubCat, and a 1-byte reserved field formerly used for a Firmware Version
(see INSTEON Device Categories83) that were burned in at the factory.

Procedure
1. Send the Get Version (0x48) IBIOS Serial Command from the IBIOS Serial

Command Summary Table197:

 0x02 0x48.

2. The response should be:

 0x02 0x48 <INSTEON Address (3 bytes)> <Device Type (2 bytes>
<Firmware Revision (1 byte)> 0x06.

Dev Guide, Chapter 9 Page 203

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Read and Write Memory

Summary
In this example we will use the Upload (0x42) and Download (0x40) IBIOS Serial
Commands to alter data stored in the PLC’s serial EEPROM chip. See the Flat
Memory Map170 for memory address locations. First we will read 4 bytes of data
starting at the beginning of external EEPROM at address 0x0300, then we will write
0x55 0xAA 0x55 0xAA to those locations, then read the data back out to observe
our changes.

Procedure
1. Use the Upload (0x42) IBIOS Serial Command from the IBIOS Serial Command

Summary Table197 to read 0x0004 bytes starting at 0x0300:

 0x02 0x42 0x03 0x00 0x00 0x04.

You can check the response to see what the four bytes are. See the IBIOS Serial
Command Summary Table197 for the response syntax.

2. Now use Download (0x40) to write 0x55 0xAA 0x55 0xAA into those
locations:

 0x02 0x40 0x03 0x00 0x00 0x04 0xFD 0xFB 0x55 0xAA 0x55 0xAA.

It is not mandatory that you include a valid checksum (here 0xFDFB), but it is
strongly recommended, because you can then use a Get Checksum (0x44)
IBIOS Serial Command to be sure the data was properly written, without having
to read all of the data back.

The response should be:

 0x02 0x40 0x03 0x00 0x00 0x04 0x06.

Note that the response merely echoes the first 6 bytes of the received Command,
followed by an ASCII 0x06 (ACK) indicating that the Command was properly
received. The ACK does not indicate that the Command executed properly.

3. Now read out the four bytes at 0x0300 again as in Step 1:

 0x02 0x42 0x03 0x00 0x00 0x04.

Check that the response contains the 0x55 0xAA 0x55 0xAA data. For further
validation, you can also verify that the checksum in the response matches a
checksum that you compute over the received data.

Dev Guide, Chapter 9 Page 204

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Get Checksum on Region of Memory

Summary
This example will demonstrate getting the checksum over the first 10 bytes of SALad
application code. The checksum is computed as the two’s complement of a 16-bit
sum of the bytes. You can take a two’s complement by inverting all 16 bits in the
sum and then incrementing by one, or else you can just subtract the 16-bit value
from 0x0000.

For this example the beginning of the SALad application starts at 0x0230 and is 0x0a
bytes long.

Procedure
1. Use the Get Checksum (0x44) IBIOS Serial Command from the IBIOS Serial

Command Summary Table197 to get the checksum on the region starting at
0x0230 and extending 0x000a bytes:

0x02 0x44 0x02 0x30 0x00 0xa0.

2. Retrieve the checksum from the return message, which should be:

0x02 0x44 0x02 0x30 0x00 0xA0 <checksum MSB> <checksum LSB> 0x06.

Dev Guide, Chapter 9 Page 205

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Send INSTEON

Summary
Before sending INSTEON messages you should familiarize yourself with Chapter 5 —
INSTEON Messages38 and Chapter 8 — INSTEON Command Set114.

In this example we will send the INSTEON ON Command with Level 0xFF (full on)
from a PLC to a LampLinc™ V2 Dimmer that has an INSTEON Address of 0x0002AC.
We will first copy the INSTEON message to an area of PLC memory used as a
message construction buffer. Then we will set the Request-to-Send INSTEON flag,
causing the PLC to send the INSTEON message in its construction buffer to the
LampLinc.

Note that for security reasons, IBIOS will always insert its own address (the 3-byte
IBIOS ID burned in at the factory) in the From Address field no matter what you
write to the construction buffer. See Masking Non-linked Network Traffic112 for more
information on INSTEON Security112. Therefore, we do not need to put the From
Address in the INSTEON message.

Procedure
1. Use the Download (0x40) IBIOS Serial Command from the IBIOS Serial

Command Summary Table197 to load this 6-byte INSTEON message starting with
the To Address field

 0x00 0x02 0xAC 0x0F 0x11 0xFF

into the PLC’s Construction Buffer starting at the To Address field at location
0x1A4 (see Flat Memory Map170). NOTE: Although the Construction Buffer starts
at 0x1A1, the first three bytes are the From Address, which the INSTEON Engine
automatically fills in during sends.

The fully formed Download (0x40) IBIOS Serial Command, with the embedded
INSTEON message in bold, is:

 0x02 0x40 0x01 0xA4 0x00 0x06 0xFD 0x88 0x00 0x02 0xAC 0x0F 0x11
0xFF.

The returned serial message should be an echo of the first 6 bytes of the Serial
Command followed by an ASCII 0x06 (ACK), like this:

 0x02 0x40 0x01 0xA4 0x00 0x06 0x06.

2. Now use the Mask (0x46) IBIOS Serial Command to set the _I_Transmit
Request-to-Send INSTEON flag (bit 4) in the I_Control register at 0x142 (see
Flat Memory Map170), by sending:

 0x02 0x46 0x01 0x42 0x10 0xFF.

The returned serial message should be:

 0x02 0x46 0x01 0x42 0x10 0xFF 0x06.

Dev Guide, Chapter 9 Page 206

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Receive INSTEON

Summary
Before receiving INSTEON messages you should familiarize yourself with Chapter 5
— INSTEON Messages38 and Chapter 8 — INSTEON Command Set114.

Here we assume you are using a The SmartLabs PowerLinc Controller28 (PLC)
running the default SALad coreApp Program272.

When the PLC receives an INSTEON message, IBIOS fires an IBIOS Event that a
SALad program handles. PLCs come from the factory with an open-source SALad
coreApp Program272 installed, and you can create your own custom applications by
modifying coreApp.

When an INSTEON message arrives, coreApp’s event handlers send an INSTEON
Received (0x4F) IBIOS Serial Command containing the IBIOS Event number and
the INSTEON message to your PC. Your PC can then deal with the INSTEON
Received (0x4F) IBIOS Serial Command whenever it shows up in its serial buffer.

Procedure
1. When an INSTEON message is received, coreApp (and all applications built upon

it) will send the message data to your PC using the following format:

 0x02 0x4F <Event Handle> <INSTEON message>

2. The Event Handle byte tells which of the IBIOS Events185 (0x01 through 0x07)
IBIOS fired to trigger the SALad coreApp program. See the IBIOS Event
Summary Table185 and IBIOS Event Details187 for more information about what
kinds of INSTEON message fire which events.

3. To determine if the length of the INSTEON message is 9 bytes (Standard) or 23
bytes (Extended), inspect the message’s Extended Message Flag43 (bit 4 of the
message’s 7th byte). The INSTEON Message Summary Table46 shows all possible
INSTEON message types.

4. To determine the meaning of the INSTEON message, look at the Command 1 and
244 fields in the message. The INSTEON Command Set Tables124 enumerate all of
the possible INSTEON Commands in Chapter 8 — INSTEON Command Set114.

Dev Guide, Chapter 9 Page 207

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Send X10

Summary
In this example we will send X10 A1/AON over the powerline using a PLC and IBIOS
Serial Commands. First we will download the A1 X10 address into the X10 transmit
buffer. Then we will set the Request-to-Send X10 bit and clear the
Command/Address bit of the X10 Flags register with a Mask (0x46) IBIOS Serial
Command. Then we will download the AON X10 Command into the X10 transmit
buffer, followed by setting both the Request-to-Send X10 and the Command/Address
bits with another Mask (0x46) Command.

See IBIOS X10 Signaling213 for more information.

Procedure
1. Use the Download (0x40) IBIOS Serial Command from the IBIOS Serial

Command Summary Table197 to load an X10 A1 address (0x66) into the X10
transmit buffer X10_TX at 0x0165 (i1 Engine, shown here) or 0x01EE (i2 Engine)
(see Flat Memory Map170) by sending:

 0x02 0x40 0x01 0x65 0x00 0x01 0xFF 0x33 0x66,

then check for the ASCII 0x06 (ACK) at the end of the echoed response:

 0x02 0x40 0x01 0x65 0x00 0x01 0x06.

2. Use the Mask (0x46) IBIOS Serial Command to set the _X10_RTS flag (bit 7)
and clear the _X10_TXCOMMAND flag (bit 3) in the X10_FLAGS register at
0x0166 (i1 Engine, shown here) or 0x01EF (i2 Engine) (see Flat Memory Map170)
via:

 0x02 0x46 0x01 0x66 0x80 0xF7,

then check for the ASCII 0x06 (ACK) at the end of the echoed response:

 0x02 0x46 0x01 0x66 0x80 0xF7 0x06.

3. The PLC will now send an A1 X10 address over the powerline.

4. As in Step 1, load an X10 AON Command (0x62) into the X10 transmit buffer by
sending:

 0x02 0x40 0x01 0x65 0x00 0x01 0xff 0x37 0x62,

and check for an appropriate response:

 0x02 0x40 0x01 0x65 0x00 0x01 0x06.

5. As in Step 2, use the Mask Command to set the _X10_RTS bit and set the
_X10_TXCOMMAND bit via:

 0x02 0x46 0x01 0x66 0x88 0xff

then check for an appropriate response:

Dev Guide, Chapter 9 Page 208

August 16, 2007 © 2005-2007 SmartLabs Technology

 0x02 0x46 0x01 0x66 0x88 0xFF 0x06.

6. The PLC will now send an AON X10 Command over the powerline.

Dev Guide, Chapter 9 Page 209

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Simulated Event

Summary
You can use the Simulated Event (0x47) IBIOS Serial Command from the IBIOS
Serial Command Summary Table197 to cause the PLC to run its SALad application
with the specified event or timer handle in the event queue. See SALad Event
Handling268 for more information on the event processing system that SALad
programs use.

This example lists a demo SALad application that you can install in the PLC using the
tools documented in the SALad Integrated Development Environment User’s
Guide287.

Whenever when the PLC’s SET Button is tapped, the EVNT_BTN_TAP (0x0A)
IBIOS Event fires (see IBIOS Event Summary Table185). The demo application’s
event handler uses a Variable-length Text Message (0x43) IBIOS Serial
Command to send a ‘Button tap detected’ ASCII message over the serial connection
when this event fires.

You can use this same method for testing other event processing code in your SALad
applications.

To demonstrate the Simulated Event (0x47) IBIOS Serial Command we will send a
simulated EVNT_BTN_TAP (0x0A) and observe the ‘Button tap detected’ message.

Procedure
1. Using the SALad IDE, download the following SALad application into the

PowerLinc V2 Controller (iPLC_Map.sal has the definitions and equates for the
Flat Memory Map170, and Event.sal has equates for the IBIOS Events185):

INCLUDE "iPLC_Map.sal"
INCLUDE "Event.sal"

; API Macro Definitions
DEFINE API DATA 0x04
DEFINE SendString API 0x86 ; send a null terminated string
DEFINE SendByte API 0x44

; application header
ORG 0x210
 DATA 0x02 0x10 ; start at 0x0210
 DATA 0x00 0x01 ; length 1
 DATA 0x00 0x00 ; checksum 0 (no verification)
; entry point for timers
ORG 0x230
 END ; just exit if timer

; entry point for static events
ORG 0x237
 COMP= #EVNT_INIT, NTL_EVENT, ButtonEvent ; if initialization
 MOVE$ #0x00, NTL_TIMERS, 0x2D ; clear out NTL_TIMERS
ButtonEvent
 COMP= #EVNT_BTN_TAP, NTL_EVENT, Exit ; check for button tap
 SendString strButtonMessage
Exit
 END
strButtonMessage
 DATA "Button tap detected", 0x0d, 0x0a, 0x00

2. Tap the SET Button on the PLC and you should see the message ‘Button tap
detected’ displayed in the IDE’s Comm Window – ASCII Window322.

Dev Guide, Chapter 9 Page 210

August 16, 2007 © 2005-2007 SmartLabs Technology

3. Now send the Simulated Event serial Command from the IBIOS Serial
Command Summary Table197 to fire the EVNT_BTN_TAP (0x0A) IBIOS Event:

 0x02 0x47 0x0A 0x00.

You should see the same ‘Button tap detected’ message displayed in the IDE’s
ASCII Window.

Dev Guide, Chapter 9 Page 211

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS INSTEON Engine
The IBIOS INSTEON Engine handles INSTEON message transport. The format and
meaning of INSTEON messages are described in detail in Chapter 5 — INSTEON
Messages38. How INSTEON messages propagate in an INSTEON network is explained
in Chapter 6 — INSTEON Signaling Details56.

You can use the method given in the IBIOS Send INSTEON205 example in the IBIOS
Serial Commands196 section to send an INSTEON message with the INSTEON Engine.
However, receiving INSTEON messages is time-critical, and although it is technically
possible to wait for one of the ‘INSTEON message received’ events and then poll the
INSTEON receive buffer, the buffer can easily be overwritten by new INSTEON
messages if it is not read quickly enough. Therefore, the safest way to receive
INSTEON messages is to use the SALad coreApp Program272 pre-installed in The
SmartLabs PowerLinc Controller28, or else to write your own SALad application that
employs the same method as coreApp. See the IBIOS Receive INSTEON206 example
in the IBIOS Serial Commands196 section for more details.

The INSTEON Engine automatically handles INSTEON Message Hopping49 and
INSTEON Message Retrying54. It also deals with the Message Integrity Byte44 so you
don’t have to. Whenever you send or receive a Direct INSTEON message, the
INSTEON Engine knows about the expected Acknowledgement message and handles
it for you, then fires one of the EVNT_ITX_ACK or EVNT_ITX_NACK IBIOS Events185
to notify you of the outcome.

The INSTEON Engine does not handle INSTEON ALL-Link Groups93 and ALL-Link
Cleanup messages, nor anything involving the INSTEON ALL-Link Database101. Both
the SALad coreApp Program272 and INSTEON Modems (see Chapter 10 — INSTEON
Modems217) do handle these functions at a higher level, however, so you do not have
to worry about coding them yourself.

Dev Guide, Chapter 9 Page 212

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Software Realtime
Clock/Calendar

IBIOS keeps time using a software realtime clock (RTC) that ticks once per second.
Devices that also have a hardware RTC can use it to set the software RTC. The
SALad coreApp Program272 uses the hardware RTC in The SmartLabs PowerLinc
Controller28 to set the software RTC at power up and also every midnight.

You can set the software RTC manually using the registers shown below, excerpted
from the Flat Memory Map170.

i1 Addr i2 Addr Register and Bits Description

0x0158 0x01E1 RTC_TIME_H Time since midnight in minutes (MSB, 0-1439)

0x0159 0x01E2 RTC_TIME_L Time since midnight in minutes (LSB, 0-1439)

0x015A 0x01E3 RTC_YEAR Year (0-99)

0x015B 0x01E4 RTC_MON Month (1-12)

0x015C 0x01E5 RTC_DAY Day (1-31, month specific)

0x015D 0x01E6 RTC_DOW Day-of-Week bitmap (0SSFTWTM)

0x015E 0x01E7 RTC_HOUR Hour (0-23)

0x015F 0x01E8 RTC_MIN Minute (0-59)

0x0160 0x01E9 RTC_SEC Second (0-59)

When you set the software RTC, you should also set the RTC_TIME_H,L minutes-
from-midnight value, because IBIOS will only set it by zeroing it at the next
midnight.

The software RTC handles leap year, but it does not handle daylight-savings time.
CoreApp, however, does handle daylight savings.

Dev Guide, Chapter 9 Page 213

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS X10 Signaling
When IBIOS receives an X10 byte over the powerline, it fires an EVNT_XRX_MSG
(0x08) or EVNT_XRX_XMSG (0x09) IBIOS Event, as explained in IBIOS Event
Details187, Note 6. If the SALad coreApp Program272 or another SALad application
with an appropriate event handler is running, SALad will send an X10 Byte
Received (0x4A) IBIOS Serial Command, as explained in IBIOS Serial Command
Details198, Note 9.

The manual method for transmitting an X10 Address followed by an X10 Command is
explained in the IBIOS Send X10207 IBIOS Serial Command example.

The following excerpt from the Flat Memory Map170 shows the registers and flags that
IBIOS uses for sending and receiving X10 bytes.

i1 Addr i2 Addr Register and Bits Description

0x0164 0x01ED X10_RX X10 Receive Buffer

0x0165 0x01EE X10_TX X10 Transmit Buffer

0x01EF X10_FLAGS X10 Flags

 _X10_RTS 7 1=Request To Send

 _X10_EXTENDED 5 1=Extended transfer in progress (Tx or Rx)

 _X10_TXCOMMAND 3 1=Command, 0=Address for transmit

 _X10_RXCOMMAND 2 1=Command, 0=Address for receive

0x0166

 _X10_VALID 1 1=X10 receive valid

To send an X10 byte, place it in the X10_TX buffer, set or clear _X10_TXCOMMAND
to show whether it is an X10 Command or X10 Address, then set the _X10_RTS flag.

To see if there is a new received X10 byte in the X10_TX buffer, inspect the
_X10_VALID flag, or just wait for an EVNT_XRX_MSG (0x08) or
EVNT_XRX_XMSG (0x09) IBIOS Event. Look at _X10_RXCOMMAND to see if the
received byte is an X10 Command or X10 Address, and look at _X10_EXTENDED to
see if it is part of an X10 Extended message.

Dev Guide, Chapter 9 Page 214

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Input/Output
IBIOS I/O drivers are limited to an IBIOS LED Flasher214 and an IBIOS SET Button
Handler214.

IBIOS LED Flasher
You can control LED flashing using the following registers excerpted from the Flat
Memory Map170.

i1 Addr i2 Addr Register and Bits Description

0x0168 0x0164 LED_MODE Bitmap defines flashing pattern for LED

1=On, 0=Off

0x0169 0x0165 LED_TMR Duration of LED flashing in seconds

0x016A 0x0166 LED_DLY Period between each flash. Defaults to 5, which is 1/8
second per bit in LED_MODE.

LED_MODE is a bitmap that defines 8 on or off periods for the LED, and LED_DLY
defines how fast the bits are shifted to flash the LED. The default LED_DLY value is
5, which is 1/8 second per bit. Larger values will slow down the flashing.

To flash the LED, load the number of seconds that you want it to flash into LED_TMR.

For example, to flash the LED on and off at half-second intervals for three seconds,
load 0xF0 into LED_MODE and then load 0x03 into LED_TMR.

IBIOS SET Button Handler
Pushing the SET Button generates EVNT_BTN_TAP (0x0A), EVNT_BTN_HOLD
(0x0B), and EVNT_BTN_REL (0x0C) IBIOS Events, as explained in IBIOS Event
Details187, Note 7. The TAP_CNT register in the Flat Memory Map170. Lets you see
how many times the SET Button was tapped.

i1 Addr i2 Addr Register and Bits Description

0x0156 0x016B TAP_CNT Counts multiple SET Button taps

Dev Guide, Chapter 9 Page 215

August 16, 2007 © 2005-2007 SmartLabs Technology

IBIOS Remote Debugging
You can remotely debug a SALad program with the Debug Report (0x49) IBIOS
Serial Command (see IBIOS Serial Command Details198). This is the underlying
mechanism used by the IDE debugger described in the SALad Integrated
Development Environment User’s Guide287.

Three flags in the NTL_CONTROL register at 0x0076 (see Flat Memory Map170)
control IBIOS remote debugging. These flags are bit 7, (_RD_STEP), bit 6
(_RD_HALT), and bit 5 (_RD_BREAK). A 16-bit address for breakpoints or range
checking can be set in the RD_H and RD_L registers at 0x0026.

i1 Addr i2 Addr Register and Bits Description

0x0026 0x0026 RD_H Remote Debugging breakpoint address MSB

0x0027 0x0027 RD_L Remote Debugging breakpoint address LSB

0x0176 NTL_CONTROL SALad debugging control flags

_RD_HALT _RD_STEP

0 0 Normal execution

0 1 Animation (Trace)

1 0 Execution halted

_RD_STEP

_RD_HALT

7

6

1 1 Single step requested

0x0076

_RD_BREAK 5 0=Range Check Mode, 1=Breakpoint Mode

To run a SALad program normally, clear both _RD_HALT and _RD_STEP. This is the
default at power up.

To halt a SALad program as soon as possible, set _RD_HALT and clear _RD_STEP.
Execution will stop after the current instruction executes and a Debug Report
(0x49) IBIOS Serial Command will report the address of the next instruction to be
executed.

To send a Debug Report before every instruction executes, clear _RD_HALT and set
_RD_STEP.

To single-step through a SALad program, set both _RD_HALT and _RD_STEP. This
will cause the next instruction to execute followed by an immediate halt. The halt
will cause a Debug Report to be sent.

To do range checking or to set a breakpoint, load a comparison address into the
RD_H and RD_L registers. If RH_H contains 0x00 (the default power-up condition),
range checking and breakpoints are disabled.

Clear the _RD_BREAK flag to use the comparison address for range checking or else
set _RD_BREAK to use the comparison address as a breakpoint.

If you are range checking and program execution is attempted at a location greater
than the comparison address, execution will be halted, a Debug Report will be sent,
and the IBIOS Watchdog Timer216 will cause a power-on reset.

Dev Guide, Chapter 9 Page 216

August 16, 2007 © 2005-2007 SmartLabs Technology

If you are using the comparison register for a breakpoint, execution will halt only if
the beginning of the next instruction exactly matches the comparison address.

You can also do remote debugging over the INSTEON network alone by setting the
flag _I_DebugRpt (bit 6) in the I_Control register at 0x0142. This flag is cleared at
power up. When the _I_DebugRpt flag is set, every time a Debug Report (0x49)
IBIOS Serial Command would be sent over a serial connection, a Debug Report
(0x49) INSTEON SB Command from the table of INSTEON Standard-length
Broadcast Commands155 will be sent in an INSTEON Broadcast message. You can
use INSTEON SD Peek and Poke Commands from the table of INSTEON Standard-
length Direct Commands125 to set the comparison address and the debugging control
flags in the remote INSTEON device.

IBIOS Watchdog Timer
The watchdog timer in IBIOS is automatic. IBIOS sets appropriate timeout values
for itself and resets the watchdog whenever it returns from a task before the
timeout. If a timeout does occur, the watchdog code performs a power-on reset,
which puts the device in the same state as cycling power does.

There are two ways to force the watchdog timer to cause a reset. One will occur if
you are using IBIOS debugging to do program counter range checking (see IBIOS
Remote Debugging215) and the range is exceeded. The other way is to set the
_Reset flag (bit 7) in the Control register at 0x0154 (i1 Engine) or 0x016C (12
Engine) to one (see Flat Memory Map170). Both conditions cause IBIOS to execute
an endless loop, which will eventually time out the watchdog.

You can manually reset the watchdog (buying more time) by setting the _Watchdog
flag (bit 6) in the Control register at 0x0154 to one.

Dev Guide, Chapter 10 Page 217

August 16, 2007 © 2005-2007 SmartLabs Technology

Chapter 10 — INSTEON Modems

INSTEON Modem (IM) chips offer developers a simple, robust interface to an
INSTEON network. There are currently two kinds of IM, the IN2680A INSTEON
Direct Powerline Modem Interface10 and the IN2682A INSTEON Direct RF Modem
Interface10. A BiPHY™ Modem that interfaces to both the powerline and radio is
under development.

SmartLabs offers a Powerline Modem™ (PLM) module, which uses an IN2680A
Modem chip to implement an interface between a host device and an INSTEON
network on the powerline. The PLM is a self-contained module that plugs into the
wall and connects to the host using a serial communications daughter card that is
fully isolated from the powerline. See The SmartLabs Powerline Modem29, above, for
more information about the PLM.

INSTEON Modems provide a simple interface to many of the IBIOS Serial
Commands196 described in Chapter 9 — INSTEON BIOS (IBIOS)166, but they also
handle ALL-Linking, ALL-Link Database management, ALL-Link Cleanup messages,
X10 powerline interfacing, and message acknowledgement. The RS232 serial
interface to the host is similar to the IBIOS Serial Communication Protocol193, and
some of the IBIOS Serial Commands196 are duplicated in the INSTEON Modems.

As an added bonus, the easiest way to achieve INSTEON conformance for your
product is to build it around an INSTEON modem, because an IM automatically
handles most of the details of the INSTEON protocol for you. See the INSTEON
Conformance Specification9 document for the full conformance requirements.

In This Chapter

IM Serial Communication Protocol and Settings218
Describes the serial communication protocol, the port settings for an RS232 link,
and a recommended terminal program.

IM Power-up and Reset States221
Explains what happens when you power up the IM or reset it.

IM Serial Commands222
Lists the IM Serial Commands and describes what they do, in a single table and
individual charts grouped by functionality.

Dev Guide, Chapter 10 Page 218

August 16, 2007 © 2005-2007 SmartLabs Technology

IM Serial Communication Protocol and
Settings
In This Section

IM Serial Communication Protocol219
Gives the protocol for communicating serially with an INSTEON Modem.

IM RS232 Port Settings219
Shows how to set up your PC’s COM (RS232) port to talk to an INSTEON Modem.

How to Quickly Start Communicating with an IM220
Gives a recommendation for a terminal program for communicating with an
INSTEON Modem.

Dev Guide, Chapter 10 Page 219

August 16, 2007 © 2005-2007 SmartLabs Technology

IM Serial Communication Protocol
All INSTEON Modem (IM) Serial Commands start with ASCII 0x02 (STX, Start-of-
Text) followed by the Serial Command Number (see IM Serial Commands222). What
data follows the Command depends on the Command syntax (see IM Serial
Command Summary Table223 and IM Serial Command Charts227).

When you send a message to the IM, it will respond with an echo of the 0x02 and the
IM Command Number followed by any data that the Command returns (often just an
echo of what you sent to it). The last byte it sends back will be ASCII 0x06 (ACK,
Acknowledge).

(S: and R: denote serial data you Send to or Receive from the IM, respectively.)

S: 0x02 <Command Number> <parameters>

R: 0x02 <Command Number> <any returned data> 0x06 (ACK)

If the IM is not ready, it will respond with an echo of the 0x02 and the IM Command
Number followed by ASCII 0x15 (NAK, Negative Acknowledge).

S: 0x02 <Command Number> <parameters>

R: 0x15 (NAK)

If you receive 0x15 (NAK), resend your Serial Command.

IM RS232 Port Settings
To communicate to an RS232 IM, set your PC’s COM port as follows:

Setting Value

Baud Rate 19,200

Data Bits 8

Parity N

Stop Bits 1

Hardware Flow Control None

Software Flow Control IM echoes bytes received from host

The IM buffers IM Commands as it receives them, so you can send a complete IM
Command without pause. To maintain compatibility with earlier IM versions, the IM
will echo each byte that it receives (earlier versions of the IM used byte echoing for
flow control). You can now ignore the byte echos, but in order to avoid overrunning
the IM’s receive buffer, you must wait for the IM to send its response to your current
IM Command before sending a new one.

Note that there is a maximum time between IM Command bytes that you send to the
IM. If you do not send the next expected byte of an IM Command within 240
milliseconds after sending the previous one, the IM will reset its message parser and
you will have to resend the message from the beginning. You can disable this
Deadman feature by setting a configuration bit (see Set IM Configuration255 below).

Dev Guide, Chapter 10 Page 220

August 16, 2007 © 2005-2007 SmartLabs Technology

There is no flow control when the IM sends data to the host—the IM will transfer data
to the host as fast as it can send it.

How to Quickly Start Communicating with
an IM

No matter how your application intends to use the IM, it is important to gain a basic
understanding of how it operates. SmartLabs suggests that developers use a
terminal communications program and a serial connection to an IM to get started.

While there are many terminal programs for computers, SmartLabs has found good
results with Docklight Scripting. An evaluation copy may be downloaded from
http://www.docklight.de/.

Docklight Scripting allows you to set up test macros and label received IM Serial
Commands222 for easy identification, as suggested in the following screenshot:

http://www.docklight.de/�

Dev Guide, Chapter 10 Page 221

August 16, 2007 © 2005-2007 SmartLabs Technology

IM Power-up and Reset States
This section describes the IM Power-up Behavior221 and the IM Factory Reset
State221.

IM Power-up Behavior
The table below shows the state of the IM when it powers up. Holding down the SET
Button while powering up will cause a factory reset.

LED Indication Meaning

LED on steadily The IM detected an external EEPROM (up to 32 KB) for storage of database
links.

LED blinks six times The IM did not detect an external EEPROM, so it will use the internal EEPROM in
the processor chip. A maximum of 31 ALL-Links are permitted. An attempt to
add a 32nd ALL-Link will result in the 31st being erased.

LED off The user pressed and held the IM’s SET button for 10 seconds while powering
up, causing the IM to perform a factory reset and go into the IM Factory Reset
State221. At the conclusion of the reset, the IM’s LED will give one of the two
indications above. You will also receive a User Reset Detected253 message from
the IM.

IM Factory Reset State
Resetting the IM to its factory default condition by holding down the SET Button for
ten seconds while powering it up or by sending it a Reset the IM252 Command puts it
into the following state:

IM Resource Factory Reset State

ALL-Link Database Erased (set to all zeros).

Host Device Category,
Device Subcategory,
Firmware Version

Set to the original DevCat (0x03), SubCat (0x05), and firmware version hard-
coded into the IM’s firmware at the factory.

IM Configuration Flags Cleared (set to all zeros).

Dev Guide, Chapter 10 Page 222

August 16, 2007 © 2005-2007 SmartLabs Technology

IM Serial Commands
The IM Serial Command set is a simple but complete interface between a host
application and an INSTEON network. For example, a microcontroller in a
thermostat could use an INSTEON Powerline Modem to send and receive messages
to other INSTEON or X10 devices on the home’s powerline.

IM Serial Commands are similar to the IBIOS Serial Commands196 in both format and
functionality.

In this section, the IM Serial Commands are presented twice, once in the same table
format used for the IBIOS Serial Commands196, and again as a series of charts
grouped by functionality.

In This Section

IM Serial Command Summary Table223
Describes all of the IM Serial Commands in table form ordered by Command
Number.

IM Serial Command Charts227
Describes all of the IM Serial Commands using individual charts for each
Command, grouped by functionality.

Dev Guide, Chapter 10 Page 223

August 16, 2007 © 2005-2007 SmartLabs Technology

IM Serial Command Summary Table
This table lists all of the Modem Serial Commands supported by INSTEON powerline
or RF modem chips.

Code
Gives the hexadecimal number of the IM Serial Command. Note that IM
Commands sent by an IM to the host begin at 0x50 and IM Commands sent by
the host to an IM begin at 0x60.

Command
Gives the name of the IM Serial Command as a link to the complete explanation
of the Command in the IM Serial Command Charts227.

Format
Gives the syntax of the IM Serial Command, including any parameters.

S: and R: denote serial data you Send to or Receive from the IM, respectively.
See IM Serial Communication Protocol219 for more information.

All IM Serial Commands start with ASCII 0x02 (STX, Start-of-Text) followed by the
Serial Command Number.

All fields in this table contain only one byte, except as noted.

INSTEON Modem Serial Commands

Commands Sent from an IM to the Host

Code Command Format

0x50 INSTEON Standard
Message Received231

R: 0x02 0x50
<INSTEON Standard message (9 bytes)>

0x51 INSTEON Extended
Message Received232

R: 0x02 0x51
<INSTEON Extended message (23 bytes)>

0x52 X10 Received238 R: 0x02 0x52
<Raw X10> <X10 Flag>

0x53 ALL-Linking Completed245 R: 0x02 0x53
<0x00 (IM is Responder) | 0x01 (IM is Controller | 0xFF Link Deleted)>
<ALL-Link Group>
<ID high byte> <ID middle byte> <ID low byte>
<Device Category> <Device Subcategory> <0xFF | Firmware Revision>

R: 0x02 0x54 <0x02>
IM’s SET Button tapped

R: 0x02 0x54 <0x03>
IM’s SET Button held

R: 0x02 0x54 <0x04>
IM’s SET Button released after hold

R: 0x02 0x54 <0x12>
IM’s Button 2 tapped

R: 0x02 0x54 <0x13>
IM’s Button 2 held

R: 0x02 0x54 <0x14>
IM’s Button 2 released after hold

0x54 Button Event Report260

R: 0x02 0x54 <0x22>
IM’s Button 3 tapped

Dev Guide, Chapter 10 Page 224

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Modem Serial Commands

Commands Sent from an IM to the Host

Code Command Format

R: 0x02 0x54 <0x23>
IM’s Button 3 held

R: 0x02 0x54 <0x24>
IM’s Button 3 released after hold

0x55 User Reset Detected253 R: 0x02 0x55
User pushed and held IM’s SET Button on power up

0x56 ALL-Link Cleanup Failure
Report241

R: 0x02 0x56 <0x01>
<ALL-Link Group>
<ID high byte> <ID middle byte> <ID low byte>

0x57 ALL-Link Record
Response249

R: 0x02 0x57
<ALL-Link Record Flags>
<ALL-Link Group>
<ID high byte> <ID middle byte> <ID low byte>
<Link Data 1> <Link Data 2> <Link Data 3>

R: 0x02 0x58 <0x06>
ALL-Link Cleanup sequence completed

0x58 ALL-Link Cleanup Status
Report242

R: 0x02 0x58 <0x15>
ALL-Link Cleanup sequence aborted due to INSTEON traffic

Commands Sent from the Host to an IM

S: 0x02 0x60 0x60 Get IM Info257

R: 0x02 0x60
<ID high byte> <ID middle byte> <ID low byte>
<Device Category> <Device Subcategory> < Firmware Revision>
<0x06>

S: 0x02 0x61
<ALL-Link Group>
<ALL-Link Command>
<0xFF | 0x00>

0x61 Send ALL-Link
Command239

R: 0x02 0x61
<ALL-Link Group>
<ALL-Link Command>
<0xFF | 0x00>
<0x06>

S: 0x02 0x62
<INSTEON Standard message (6 bytes, excludes From Address) |
 INSTEON Extended message (20 bytes, excludes From Address)>

0x62 Send INSTEON Standard
or Extended Message228

R: 0x02 0x62
<INSTEON Standard message (6 bytes, excludes From Address) |
 INSTEON Extended message (20 bytes, excludes From Address)>
<0x06>

S: 0x02 0x63
<Raw X10> <X10 Flag>

0x63 Send X10237

R: 0x02 0x63
<Raw X10> <X10 Flag>
<0x06>

0x64 Start ALL-Linking243 S: 0x02 0x64
<0x00 (IM is Responder) | 0x01 (IM is Controller) |
 0x03 (IM is either) | 0xFF (Link Deleted)>
<ALL-Link Group>

Dev Guide, Chapter 10 Page 225

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Modem Serial Commands

Commands Sent from an IM to the Host

Code Command Format

R: 0x02 0x64
<0x00 (IM is Responder) | 0x01 (IM is Controller) |
 0x03 (IM is either) | 0xFF (Link Deleted)>
<ALL-Link Group>
<0x06>

S: 0x02 0x65 0x65 Cancel ALL-Linking244

R: 0x02 0x65
<0x06>

S: 0x02 0x66
<Device Category> <Device Subcategory> <0xFF | Firmware Revision>

0x66 Set Host Device
Category258

R: 0x02 0x66
<Device Category> <Device Subcategory> <0xFF | Firmware Revision>
<0x06>

S: 0x02 0x67 0x67 Reset the IM252

R: 0x02 0x67
<0x06>

S: 0x02 0x68
<Command 2 Data>

0x68 Set INSTEON ACK
Message Byte234

R: 0x02 0x68
<Command 2 Data>
<0x06>

S: 0x02 0x69 0x69 Get First ALL-Link
Record246 R: 0x02 0x69

<0x06>

S: 0x02 0x6A 0x6A Get Next ALL-Link
Record247 R: 0x02 0x6A

<0x06>

S: 0x02 0x6B
<IM Configuration Flags>

0x6B Set IM Configuration255

R: 0x02 0x6B
<IM Configuration Flags>
<0x06>

S: 0x02 0x6C 0x6C Get ALL-Link Record for
Sender248 R: 0x02 0x6C

<0x06>

S: 0x02 0x6D 0x6D LED On261

R: 0x02 0x6D
<0x06>

S: 0x02 0x6E 0x6E LED Off262

R: 0x02 0x6E
<0x06>

0x6F Manage ALL-Link
Record250

S: 0x02 0x6F
<Control Flags>
<ALL-Link Record Flags>
<ALL-Link Group>
<ID high byte> <ID middle byte> <ID low byte>
<Link Data 1> <Link Data 2> <Link Data 3>

Dev Guide, Chapter 10 Page 226

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Modem Serial Commands

Commands Sent from an IM to the Host

Code Command Format

R: 0x02 0x6F
<Control Flags>
<ALL-Link Record Flags>
<ALL-Link Group>
<ID high byte> <ID middle byte> <ID low byte>
<Link Data 1> <Link Data 2> <Link Data 3>
<0x06>

S: 0x02 0x70
<Command 2 Data>

0x70 Set INSTEON NAK
Message Byte236

R: 0x02 0x70
<Command 2 Data>
<0x06>

S: 0x02 0x71
<Command 1 Data>
<Command 2 Data>

0x71 Set INSTEON ACK
Message Two Bytes235

R: 0x02 0x71
<Command 1 Data>
<Command 2 Data>
<0x06>

S: 0x02 0x72 0x72 RF Sleep259

R: 0x02 0x72
<0x06>

S: 0x02 0x73 0x73 Get IM Configuration255
R: 0x02 0x73
<IM Configuration Flags>
<Spare 1>
<Spare 2>
<0x06>

Dev Guide, Chapter 10 Page 227

August 16, 2007 © 2005-2007 SmartLabs Technology

IM Serial Command Charts
The following charts describe the IM Commands individually in a chart format,
grouped by functionality. These are the same IM Commands as in the IM Serial
Command Summary Table223, which is ordered by Command Number.

Note that IM Commands sent by an IM to the host begin at 0x50 and IM Commands
sent by the host to an IM begin at 0x60. When the host sends an IM Command to
an IM, the IM will respond with a message according to the IM Serial Communication
Protocol219.

In This Section

INSTEON Message Handling228
Commands for sending and receiving INSTEON messages.

X10 Message Handling237
Commands for sending and receiving X10 messages.

INSTEON ALL-Link Commands239
Commands for sending ALL-Link Commands with automatic handling of ALL-Link
Cleanup Commands.

ALL-Linking Session Management243
Commands for creating ALL-Links between an IM and other INSTEON devices.

ALL-Link Database Management246
Commands for managing ALL-Link Records in the IM’s ALL-Link Database.

IM Status Management252
Commands for resetting and configuring the IM.

IM Input/Output260
Commands for managing the IM’s SET Button and LED.

Dev Guide, Chapter 10 Page 228

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Message Handling

Send INSTEON Standard or Extended Message
This Command lets you send either a Standard-length or an Extended-length
INSTEON message, depending only on what kind of INSTEON message you include in
the body of the Command.

Send INSTEON Standard-length Message
Send INSTEON Standard-length Message (0x62)

What it does Allows you to send a raw Standard-length INSTEON message.

What you send 8 bytes.

What you’ll get 9 bytes.

LED indication None.

Related Commands IM 0x50 INSTEON Standard Message Received231
IM 0x51 INSTEON Extended Message Received232

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x62 IM Command Number

3 <To Address high> The high byte of the INSTEON ID of the message addressee.

4 <To Address middle> The middle byte of the INSTEON ID of the message addressee.

5 <To Address low> The low byte of the INSTEON ID of the message addressee.

6 <Message Flags> The INSTEON message flags indicating message type and hops.
 Extended Message Flag (bit 4) is 0

7 <Command 1> INSTEON Command 1 for the addressee to execute

8 <Command 2> INSTEON Command 2 for the addressee to execute

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x62 Echoed IM Command Number

3 <To Address high> Echoed <To Address high>

4 <To Address middle> Echoed <To Address middle>

5 <To Address low> Echoed <To Address low>

6 <Message Flags> Echoed <Message Flags>
 Extended Message Flag (bit 4) is 0

7 <Command 1> Echoed <Command 1>

8 <Command 2> Echoed <Command 2>

9 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly
0x15 (NAK) if an error occurred

Notes

The From Address is not required because the IM will automatically insert its own INSTEON ID into the
message.

For more information on INSTEON Commands and the latest Command set, please download the current
INSTEON Command Tables Document9 from www.insteon.net.

http://www.insteon.net/�

Dev Guide, Chapter 10 Page 229

August 16, 2007 © 2005-2007 SmartLabs Technology

Send INSTEON Extended-length Message
Send INSTEON Extended-length Message (0x62)

What it does Allows you to send a raw Extended-length INSTEON message.

What you send 22 bytes.

What you’ll get 23 bytes.

LED indication None.

Related Commands IM 0x50 INSTEON Standard Message Received231
IM 0x51 INSTEON Extended Message Received232

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x62 IM Command Number

3 <To Address high> The high byte of the INSTEON ID of the message addressee.

4 <To Address middle> The middle byte of the INSTEON ID of the message addressee.

5 <To Address low> The low byte of the INSTEON ID of the message addressee.

6 <Message Flags> The INSTEON message flags indicating message type and hops.
 Extended Message Flag (bit 4) is 1

7 <Command 1> INSTEON Command 1 for the addressee to execute

8 <Command 2> INSTEON Command 2 for the addressee to execute

9 <User Data 1> Extended message data

10 <User Data 2> Extended message data

11 <User Data 3> Extended message data

12 <User Data 4> Extended message data

13 <User Data 5> Extended message data

14 <User Data 6> Extended message data

15 <User Data 7> Extended message data

16 <User Data 8> Extended message data

17 <User Data 9> Extended message data

18 <User Data 10> Extended message data

19 <User Data 11> Extended message data

20 <User Data 12> Extended message data

21 <User Data 13> Extended message data

22 <User Data 14> Extended message data

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x62 Echoed IM Command Number

3 <To Address high> Echoed <To Address high>

4 <To Address middle> Echoed <To Address middle>

5 <To Address low> Echoed <To Address low>

6 <Message Flags> Echoed <Message Flags>
 Extended Message Flag (bit 4) is 1

7 <Command 1> Echoed <Command 1>

8 <Command 2> Echoed <Command 2>

9 <User Data 1> Echoed Extended message data

10 <User Data 2> Echoed Extended message data

11 <User Data 3> Echoed Extended message data

12 <User Data 4> Echoed Extended message data

13 <User Data 5> Echoed Extended message data

14 <User Data 6> Echoed Extended message data

Dev Guide, Chapter 10 Page 230

August 16, 2007 © 2005-2007 SmartLabs Technology

Send INSTEON Extended-length Message (0x62)

15 <User Data 7> Echoed Extended message data

16 <User Data 8> Echoed Extended message data

17 <User Data 9> Echoed Extended message data

18 <User Data 10> Echoed Extended message data

19 <User Data 11> Echoed Extended message data

20 <User Data 12> Echoed Extended message data

21 <User Data 13> Echoed Extended message data

22 <User Data 14> Echoed Extended message data

23 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly
0x15 (NAK) if an error occurred

Notes

The From Address is not required because the IM will automatically insert its own INSTEON ID into the
message.

For more information on INSTEON Commands and the latest Command set, please download the current
INSTEON Command Tables Document9 from www.insteon.net.

http://www.insteon.net/�

Dev Guide, Chapter 10 Page 231

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Standard Message Received

INSTEON Standard Message Received (0x50)

What it does Informs you of an incoming Standard-length INSTEON message.

When you’ll get this A Standard-length INSTEON message is received from either a Controller or
Responder that you are ALL-Linked to.

What you’ll get 11 bytes.

LED indication The LED will blink during INSTEON reception.

Related Commands IM 0x51 INSTEON Extended Message Received232
IM 0x52 X10 Received238

Message Sent from IM to Host

Byte Value Meaning

1 0x02 Start of IM Command

2 0x50 IM Command Number

3 <From Address high> The high byte of the INSTEON ID of the message originator.

4 <From Address middle> The middle byte of the INSTEON ID of the message originator.

5 <From Address low> The low byte of the INSTEON ID of the message originator.

6 <To Address high> The high byte of the INSTEON ID of the message addressee.
If the message is an ALL-Link Broadcast (bits 7 and 6 of the
<Message Flags> byte are set) then this will be 0.

7 <To Address middle> The middle byte of the INSTEON ID of the message addressee.
If the message is an ALL-Link Broadcast (bits 7 and 6 of the
<Message Flags> byte are set) then this will be 0.

8 <To Address low> The low byte of the INSTEON ID of the message addressee.
If the message is an ALL-Link Broadcast (bits 7 and 6 of the
<Message Flags> byte are set) then this will indicate the ALL-Link
Group Number.

9 <Message Flags> The INSTEON message flags indicating message type and hops.

10 <Command 1> INSTEON Command 1 field of the message.

11 <Command 2> INSTEON Command 2 field of the message.
This byte contains the ALL-Link Group Number of the ALL-Link
Broadcast when either bit 6 of the <Message Flags> byte is set (ALL-
Link Cleanup) or bits 6 and 5 of the <Message Flags> byte are set
(ALL-Link Cleanup ACK).

Notes

This is the same as IM 0x51 INSTEON Extended Message Received232, except that there is no <User
Data>.

Normally, the IM will only send the host INSTEON messages that are explicitly addressed to the IM or that
are from devices that the IM is ALL-Linked to. This behavior can be modified—see the About Monitor
Mode256 note in the Set IM Configuration255 chart for more information.

For more information on INSTEON Commands and the latest Command set, please download the current
INSTEON Command Tables Document9 from www.insteon.net.

http://www.insteon.net/�

Dev Guide, Chapter 10 Page 232

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Extended Message Received

INSTEON Extended Message Received (0x51)

What it does Informs you of an incoming Extended-length INSTEON message.

When you’ll get this An Extended-length INSTEON message is received from either a Controller or
Responder that you are ALL-Linked to.

What you’ll get 25 bytes.

LED indication The LED will blink during INSTEON reception.

Related Commands IM 0x50 INSTEON Standard Message Received231
IM 0x52 X10 Received238

Message Sent from IM to Host

Byte Value Meaning

1 0x02 Start of IM Command

2 0x51 IM Command Number

3 <From Address high> The high byte of the INSTEON ID of the message originator.

4 <From Address middle> The middle byte of the INSTEON ID of the message originator.

5 <From Address low> The low byte of the INSTEON ID of the message originator.

6 <To Address high> The high byte of the INSTEON ID of the message addressee.
If the message is an ALL-Link Broadcast (bits 7 and 6 of the
<Message Flags> byte are set) then this will be 0.

7 <To Address middle> The middle byte of the INSTEON ID of the message addressee.
If the message is an ALL-Link Broadcast (bits 7 and 6 of the
<Message Flags> byte are set) then this will be 0.

8 <To Address low> The low byte of the INSTEON ID of the message addressee.
If the message is an ALL-Link Broadcast (bits 7 and 6 of the
<Message Flags> byte are set) then this will indicate the ALL-Link
Group Number.

9 <Message Flags> The INSTEON message flags indicating message type and hops.

10 <Command 1> INSTEON Command 1 field of the message.

11 <Command 2> INSTEON Command 2 field of the message.
This byte contains the ALL-Link Group Number of the ALL-Link
Broadcast when either bit 6 of the <Message Flags> byte is set (ALL-
Link Cleanup) or bits 6 and 5 of the <Message Flags> byte are set
(ALL-Link Cleanup ACK).

12 <User Data 1> Extended message data

13 <User Data 2> Extended message data

14 <User Data 3> Extended message data

15 <User Data 4> Extended message data

16 <User Data 5> Extended message data

17 <User Data 6> Extended message data

18 <User Data 7> Extended message data

19 <User Data 8> Extended message data

20 <User Data 9> Extended message data

21 <User Data 10> Extended message data

22 <User Data 11> Extended message data

23 <User Data 12> Extended message data

24 <User Data 13> Extended message data

25 <User Data 14> Extended message data

Dev Guide, Chapter 10 Page 233

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Extended Message Received (0x51)

Notes

This is the same as IM 0x50 INSTEON Standard Message Received231, except that there are 14 bytes of
<User Data>.

Normally, the IM will only send the host INSTEON messages that are explicitly addressed to the IM or that
are from devices that the IM is ALL-Linked to. This behavior can be modified—see the About Monitor
Mode256 note in the Set IM Configuration255 chart for more information.

For more information on INSTEON Commands and the latest Command set, please download the current
INSTEON Command Tables Document9 from www.insteon.net.

http://www.insteon.net/�

Dev Guide, Chapter 10 Page 234

August 16, 2007 © 2005-2007 SmartLabs Technology

Set INSTEON ACK Message Byte

Set INSTEON ACK Message Byte (0x68)

What it does Allows you to put one byte of data into the Command 2 field of the INSTEON
ACK message that the INSTEON Engine automatically sends after it receives an
INSTEON Direct message.

What you send 3 bytes.

What you’ll get 4 bytes.

LED indication None.

Related Commands IM 0x50 INSTEON Standard Message Received231
IM 0x51 INSTEON Extended Message Received232
IM 0x71 Set INSTEON ACK Message Two Bytes235
IM 0x70 Set INSTEON NAK Message Byte236

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x68 IM Command Number

3 <Command 2 Data> Data byte to place into the Command 2 field of the ACK response.

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x68 Echoed IM Command Number

3 <Command 2 Data> Echoed <Command 2 Data>

4 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly.
0x15 (NAK) if an error occurred.

Notes

You have only about 15 milliseconds after the receipt of an INSTEON Direct message from the IM to send
this Command to the IM. The reason is that the INSTEON Engine in the IM automatically sends
Acknowledgement messages in assigned timeslots.

Use Set INSTEON ACK Message Two Bytes235 when you need to return two bytes of data in an ACK
message.

Use Set INSTEON NAK Message Byte236 when you need to return one byte of data in a NAK message.

Certain INSTEON Direct Commands require returned data in the Acknowledgement message. For more
information on INSTEON Commands and the latest Command set, please download the current INSTEON
Command Tables Document9 from www.insteon.net.

http://www.insteon.net/�

Dev Guide, Chapter 10 Page 235

August 16, 2007 © 2005-2007 SmartLabs Technology

Set INSTEON ACK Message Two Bytes

Set INSTEON ACK Message Two Bytes (0x71)

What it does Allows you to put two bytes of data into the combined Command 1 and
Command 2 fields of the INSTEON ACK message that the INSTEON Engine
automatically sends after it receives an INSTEON Direct message.

What you send 4 bytes.

What you’ll get 5 bytes.

LED indication None.

Related Commands IM 0x50 INSTEON Standard Message Received231
IM 0x51 INSTEON Extended Message Received232
IM 0x68 Set INSTEON ACK Message Byte234
IM 0x70 Set INSTEON NAK Message Byte236

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x71 IM Command Number

3 <Command 1 Data> Data byte to place into the Command 1 field 2 of the ACK response.

4 <Command 2 Data> Data byte to place into the Command 2 field 2 of the ACK response.

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x71 Echoed IM Command Number

3 <Command 1 Data> Echoed <Command 1 Data>

4 <Command 2 Data> Echoed <Command 2 Data>

5 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly.
0x15 (NAK) if an error occurred.

Notes

You have only about 15 milliseconds after the receipt of an INSTEON Direct message from the IM to send
this Command to the IM. The reason is that the INSTEON Engine in the IM automatically sends
Acknowledgement messages in assigned timeslots.

Use Set INSTEON ACK Message Byte234 when you only need to return one byte of data in an ACK
message.

Use Set INSTEON NAK Message Byte236 when you need to return one byte of data in a NAK message.

Certain INSTEON Direct Commands require returned data in the Acknowledgement message. For more
information on INSTEON Commands and the latest Command set, please download the current INSTEON
Command Tables Document9 from www.insteon.net.

http://www.insteon.net/�

Dev Guide, Chapter 10 Page 236

August 16, 2007 © 2005-2007 SmartLabs Technology

Set INSTEON NAK Message Byte

Set INSTEON NAK Message Byte (0x70)

What it does Allows you to change the INSTEON ACK message that the INSTEON Engine
automatically sends after it receives an INSTEON Direct message into a NAK
message, and to put one byte of data into the Command 2 field of that
message.

What you send 3 bytes.

What you’ll get 4 bytes.

LED indication None.

Related Commands IM 0x50 INSTEON Standard Message Received231
IM 0x51 INSTEON Extended Message Received232
IM 0x68 Set INSTEON ACK Message Byte234
IM 0x70 Set INSTEON ACK Message Two Bytes235

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x70 IM Command Number

3 <Command 2 Data> Data byte to place into the Command 2 field of the ACK response.

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x70 Echoed IM Command Number

3 <Command 2 Data> Echoed <Command 2 Data>

4 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly.
0x15 (NAK) if an error occurred.

Notes

You have only about 15 milliseconds after the receipt of an INSTEON Direct message from the IM to send
this Command to the IM. The reason is that the INSTEON Engine in the IM automatically sends
Acknowledgement messages in assigned timeslots.

Use Set INSTEON ACK Message Byte234 or Set INSTEON ACK Message Two Bytes235 when you need to
return one or two bytes of data in an ACK message.

NAK messages report certain error conditions in a receiving device. See NAK Error Codes119 for more
information.

Dev Guide, Chapter 10 Page 237

August 16, 2007 © 2005-2007 SmartLabs Technology

X10 Message Handling

Send X10

Send X10 (0x63)

What it does Allows you to send a raw X10 Address or X10 Command.

What you send 4 bytes.

What you’ll get 5 bytes.

LED indication None.

Related Commands IM 0x52 X10 Received238

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x63 IM Command Number

3 <Raw X10> The four most significant bits contain the X10 House Code.
The four least significant bits contain the X10 Key Code.

4 <X10 Flag> 0x00 indicates that the X10 Key Code is an X10 Unit Code.
0x80 indicates that the X10 Key Code is an X10 Command.

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x63 Echoed IM Command Number

3 <Raw X10> Echoed <Raw X10>

4 <X10 Flag> Echoed <X10 Flag>

5 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly
0x15 (NAK) if an error occurred

X10 Translation Table

 4 MSBs of <Raw X10> 4 LSBs of <Raw X10>

4-bit
Code

X10 House Code
X10 Unit Code
<X10 Flag> = 0x00

X10 Command
<X10 Flag> = 0x80

0x6 A 1 All Lights Off

0xE B 2 Status = Off

0x2 C 3 On

0xA D 4 Preset Dim

0x1 E 5 All Lights On

0x9 F 6 Hail Acknowledge

0x5 G 7 Bright

0xD H 8 Status = On

0x7 I 9 Extended Code

0xF J 10 Status Request

0x3 K 11 Off

0xB L 12 Preset Dim

0x0 M 13 All Units Off

0x8 N 14 Hail Request

0x4 O 15 Dim

0xC P 16 Extended Data (analog)

Dev Guide, Chapter 10 Page 238

August 16, 2007 © 2005-2007 SmartLabs Technology

X10 Received

X10 Received (0x52)

What it does Informs you of an X10 byte detected on the powerline.

When you’ll get this Any X10 traffic is detected on the powerline.

What you’ll get 4 bytes.

LED indication The LED will blink during X10 reception.

Related Commands IM 0x63 Send X10237
IM 0x50 INSTEON Standard Message Received231
IM 0x51 INSTEON Extended Message Received232

Message Sent from IM to Host

Byte Value Meaning

1 0x02 Start of IM Command

2 0x52 IM Command Number

3 <Raw X10> The four most significant bits contain the X10 House Code.
The four least significant bits contain the X10 Key Code.

4 <X10 Flag> 0x00 indicates that the X10 Key Code is an X10 Unit Code.
0x80 indicates that the X10 Key Code is an X10 Command.

X10 Translation Table

 4 MSBs of <Raw X10> 4 LSBs of <Raw X10>

4-bit
Code

X10 House Code
X10 Unit Code
<X10 Flag> = 0x00

X10 Command
<X10 Flag> = 0x80

0x6 A 1 All Lights Off

0xE B 2 Status = Off

0x2 C 3 On

0xA D 4 Preset Dim

0x1 E 5 All Lights On

0x9 F 6 Hail Acknowledge

0x5 G 7 Bright

0xD H 8 Status = On

0x7 I 9 Extended Code

0xF J 10 Status Request

0x3 K 11 Off

0xB L 12 Preset Dim

0x0 M 13 All Units Off

0x8 N 14 Hail Request

0x4 O 15 Dim

0xC P 16 Extended Data (analog)

Dev Guide, Chapter 10 Page 239

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON ALL-Link Commands

Send ALL-Link Command

Send ALL-Link Command (0x61)

What it does Sends an ALL-Link Command to an ALL-Link Group of one or more Responders
that the IM is ALL-Linked to.

What you send 5 bytes.

What you’ll get 6 bytes for the echo of the Command and then an additional 11 bytes in an
INSTEON Standard Message Received231 message for each device in the group
that acknowledges ALL-Link Cleanup, or 7 bytes in an ALL-Link Cleanup Failure
Report241 message for each device in the group that does not acknowledge ALL-
Link Cleanup.

LED indication None.

Related Commands IM 0x50 INSTEON Standard Message Received231
IM 0x56 ALL-Link Cleanup Failure Report241
IM 0x58 ALL-Link Cleanup Status Report242

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x61 IM Command Number

3 <ALL-Link Group> ALL-Link Group Number that the ALL-Link Command is sent to

4 <ALL-Link Command> ALL-Link Command

5 <Broadcast Command 2> Sent in the Command 2 field of the ALL-Link Broadcast message
only. Command 2 will always contain the ALL-Link Group Number
for the ALL-Link Cleanup messages that follow.

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x61 Echoed IM Command Number

3 <ALL-Link Group> Echoed <ALL-Link Group>

4 <ALL-Link Command> Echoed <ALL-Link Command>

5 <Broadcast Command 2> Echoed <Broadcast Command 2>

6 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly
0x15 (NAK) if an error occurred or the group does not exist

Notes

The IM automatically sends ALL-Link Cleanup messages to each member of an ALL-Link Group following
an ALL-Link Broadcast message. If the IM detects other INSTEON traffic during this process, it will abort
the ALL-Link Cleanup sequence and send you an ALL-Link Cleanup Status Report242 with a Status Byte of
0x15 (NAK). The Cleanup sequence proceeds in the order in which the devices in the ALL-Link Group
were added to the ALL-Link Database. If the IM finishes sending all of the Cleanup messages, it will send
you an ALL-Link Cleanup Status Report242 with a Status Byte of 0x06 (ACK).

For each ALL-Link Cleanup message that the IM sends, you will either receive an INSTEON Standard
Message Received231 when the Responder answers with a Cleanup acknowledgement message, or else you
will receive an ALL-Link Cleanup Failure Report241 if the Responder fails to answer with a Cleanup
acknowledgement message. The IM will send you an ALL-Link Cleanup Status Report242 whether or not
every ALL-Link Group member acknowledges the Cleanup Command that the IM sends to it.

You can cause the IM to cancel its own Cleanup sequence by sending it a new Send ALL-Link Command239
or Send INSTEON Standard or Extended Message228 during the time that it is sending a Cleanup sequence
(i.e. after it has finished sending an ALL-Link Broadcast message). The IM will send you an ALL-Link
Cleanup Status Report242 in those cases.

The IM first sends an ALL-Link Broadcast message with Max Hops set to 3. When it sends the ensuing
ALL-Link Cleanup messages, it sets Max Hops to 1. If the IM’s INSTEON Engine needs to retry a Cleanup
message, it will automatically increment Max Hops for each retry, up to a maximum of value of 3.

Dev Guide, Chapter 10 Page 240

August 16, 2007 © 2005-2007 SmartLabs Technology

Send ALL-Link Command (0x61)

The IM sends the ALL-Link Broadcast message immediately if there is no other INSTEON traffic. If there is
other INSTEON traffic, the IM will wait for one silent powerline zero crossing following a completed
INSTEON message. The IM will send the first ALL-Link Cleanup message after a delay of 7 zero crossings.
Subsequent Cleanups will go out with a delay of 2 zero crossings.

Do not use this command to control light levels with the Light Start Manual Change INSTEON Command
SA 0x17. Use Send INSTEON Standard-length Message228 to send INSTEON Command SD 0x17 instead.

For more information on INSTEON Commands and the latest Command set, please download the current
INSTEON Command Tables Document9 from www.insteon.net.

http://www.insteon.net/�

Dev Guide, Chapter 10 Page 241

August 16, 2007 © 2005-2007 SmartLabs Technology

ALL-Link Cleanup Failure Report

ALL-Link Cleanup Failure Report (0x56)

What it does Reports that an ALL-Link Group member did not acknowledge an ALL-Link
Cleanup Command.

When you’ll get this An ALL-Link Group member that you are trying to control did not acknowledge
the ALL-Link Cleanup Command sent by the IM.

What you’ll get 7 bytes.

LED indication None.

Related Commands IM 0x58 ALL-Link Cleanup Status Report242

Message Sent from IM to Host

Byte Value Meaning

1 0x02 Start of IM Command

2 0x56 IM Command Number

3 0x01 Indicates that this ALL-Link Group member did not acknowledge an
ALL-Link Cleanup Command.

4 <ALL-Link Group> Indicates the ALL-Link Group Number that was sent in the ALL-Link
Cleanup Command.

5 <ID high byte> The high byte of the INSTEON ID of the device that did not respond.

6 <ID middle byte> The middle byte of the INSTEON ID of the device that did not
respond.

7 <ID low byte> The low byte of the INSTEON ID of the device that did not respond.

Notes

The IM automatically sends ALL-Link Cleanup messages to each member of an ALL-Link Group following
an ALL-Link Broadcast message. If the IM detects other INSTEON traffic during this process, it will abort
the ALL-Link Cleanup sequence. If the Cleanup sequence is aborted, you will not receive this message nor
will you receive a Cleanup acknowldgement message for any subsequent devices in the ALL-Link Group.
The Cleanup sequence proceeds in the order in which the devices in the ALL-Link Group were added to the
ALL-Link Database.

For each ALL-Link Cleanup message the IM sends, you will either receive an INSTEON Standard Message
Received231 when the Responder sends you an ACK, or you will receive this message. However, it can
take awhile before you receive this message. Worst case, if the IM has to wait for a clear line and then
retries the Cleanup message for the maximum of five times, the wait will be 2.150 seconds after sending
the ALL-Link Broadcast message, or 1.550 seconds after receiving the first Cleanup acknowledgement or
this message. If the Cleanup sequence was aborted due to other INSTEON traffic, you will not get this
message even then. However, you will receive ALL-Link Cleanup Status Report242 with a Status Byte of
0x15 (NAK) indicating that the Cleanup sequence was aborted.

It is possible that this ALL-Link Group member did in fact properly receive the ALL-Link Broadcast
message that preceded the ALL-Link Cleanup message.

Dev Guide, Chapter 10 Page 242

August 16, 2007 © 2005-2007 SmartLabs Technology

ALL-Link Cleanup Status Report

ALL-Link Cleanup Status Report (0x58)

What it does Notifies you if a Send ALL-Link Command239 completed with all Cleanup
messages sent, or else if Cleanups were interrupted due to other INSTEON
traffic.

When you’ll get this After you issue a Send ALL-Link Command239 and the IM finishes sending
Cleanups to all members of the ALL-Link Group, or else when the Cleanup
sequence is aborted due to other INSTEON traffic.

What you’ll get 3 bytes.

LED indication None.

Related Commands IM 0x61 Send ALL-Link Command239
IM 0x56 ALL-Link Cleanup Failure Report241

Message Sent from IM to Host

Byte Value Meaning

1 0x02 Start of IM Command

2 0x58 IM Command Number

<0x06> (ASCII ACK) The ALL-Link Command sequence initiated
previously using Send ALL-Link Command239 completed. The IM first
sent an ALL-Link Broadcast message, followed by ALL-Link Cleanup
messages sent to all members of the specified ALL-Link Group. If
any member of the ALL-Link Group does not return a Cleanup
acknowledgement, you will receive an ALL-Link Cleanup Failure
Report241 from that member.

3 <Status Byte>

<0x15> (ASCII NAK) The ALL-Link Command sequence initiated
previously using Send ALL-Link Command239 terminated before the
IM sent ALL-Link Cleanup messages to all members of the specified
ALL-Link Group. This is normal behavior when the IM detects
INSTEON traffic from other devices.

Notes

The IM automatically sends ALL-Link Cleanup messages to each member of an ALL-Link Group following
an ALL-Link Broadcast message. If the IM detects other INSTEON traffic during this process, it will abort
the ALL-Link Cleanup sequence and send you this message with a Status Byte of 0x15 (NAK). The
Cleanup sequence proceeds in the order in which the devices in the ALL-Link Group were added to the
ALL-Link Database. If the IM finishes sending all of the Cleanup messages, it will send you this message
with a Status Byte of 0x06 (ACK).

For each ALL-Link Cleanup message that the IM sends, you will either receive an INSTEON Standard
Message Received231 when the Responder answers with a Cleanup acknowledgement message, or else you
will receive an ALL-Link Cleanup Failure Report241 if the Responder fails to answer with a Cleanup
acknowledgement message. The IM will send you this message whether or not every ALL-Link Group
member acknowledges the Cleanup Command that the IM sends to it.

You can cause the IM to cancel its own Cleanup sequence by sending it a new Send ALL-Link Command239
or Send INSTEON Standard or Extended Message228 during the time that it is sending a Cleanup sequence
(i.e. after it has finished sending an ALL-Link Broadcast message). The IM will send you this message in
those cases.

Dev Guide, Chapter 10 Page 243

August 16, 2007 © 2005-2007 SmartLabs Technology

ALL-Linking Session Management

Start ALL-Linking

Start ALL-Linking (0x64)

What it does Puts the IM into ALL-Linking mode without using the SET Button.

What you send 4 bytes.

What you’ll get 5 bytes for this Command response and then an additional 10 bytes in an ALL-
Linking Completed245 message once a successful ALL-Link has been established.

LED indication The LED will blink continuously at a rate of ½ second on and ½ second off until
the ALL-Link is completed or canceled.

Related Commands IM 0x53 ALL-Linking Completed245
IM 0x65 Cancel ALL-Linking244

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x64 IM Command Number

The type of ALL-Link to establish.

 0x00 ALL-Links the IM as a Responder (slave).

 0x01 ALL-Links the IM as a Controller (master).

 0x03 ALL-Links the IM as a Controller when the IM initiates ALL-
Linking, or as a Responder when another device initiates
ALL-Linking.

3 <Link Code>

 0xFF Deletes the ALL-Link.

4 <ALL-Link Group> The ALL-Link Group Number to be linked to or deleted.

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x64 Echoed IM Command Number

3 <Code> Echoed <Code>

4 <ALL-Link Group> Echoed <ALL-Link Group>

5 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly
0x15 (NAK) if an error occurred

Dev Guide, Chapter 10 Page 244

August 16, 2007 © 2005-2007 SmartLabs Technology

Cancel ALL-Linking

Cancel ALL-Linking (0x65)

What it does Cancels the ALL-Linking process that was started either by holding down the
IM’s SET Button or by sending a Start ALL-Linking243 Command to the IM.

What you send 2 bytes.

What you’ll get 3 bytes.

LED indication The LED will stop blinking.

Related Commands IM 0x64 Start ALL-Linking243
IM 0x54 Button Event Report260

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x65 IM Command Number

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x65 Echoed IM Command Number

3 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly
0x15 (NAK) if an error occurred

Dev Guide, Chapter 10 Page 245

August 16, 2007 © 2005-2007 SmartLabs Technology

ALL-Linking Completed

ALL-Linking Completed (0x53)

What it does Informs you of a successful ALL-Linking procedure.

When you’ll get this An ALL-Linking procedure has been completed between the IM and either a
Controller or Responder.

What you’ll get 10 bytes.

LED indication None.

Related Commands IM 0x64 Start ALL-Linking243
IM 0x65 Cancel ALL-Linking244

Message Sent from IM to Host

Byte Value Meaning

1 0x02 Start of IM Command

2 0x53 IM Command Number

3 <Link Code> Indicates the type of link made.
 0x00 means the IM is a Responder (slave) to this device
 0x01 means the IM is a Controller (master) of this device
 0xFF means the ALL-Link to the device was deleted
If done manually (by pushing the SET Button) the Controller /
Responder relationship between the IM and the device is determined
automatically. You can assign the Controller / Responder
relationship unconditionally by using the Start ALL-Linking243
Command.

4 <ALL-Link Group> Indicates the ALL-Link Group Number that was assigned to this link.
If done manually (by pushing the SET Button) the ALL-Link Group
Number is automatically assigned by the IM. You can assign ALL-
Link Group Numbers unconditionally by using the Start ALL-Linking243
Command.

5 <ID high byte> The high byte of the INSTEON ID of the device that was ALL-Linked.

6 <ID middle byte> The middle byte of the INSTEON ID of the device that was ALL-
Linked.

7 <ID low byte> The low byte of the INSTEON ID of the device that was ALL-Linked.

8 <Device Category> The Device Category (DevCat) of the Responder device that was
ALL-Linked.
 (Only valid when the IM is a Controller)

9 <Device Subcategory> The Device Subcategory (SubCat) of the Responder device that was
ALL-Linked.
 (Only valid when the IM is a Controller)

10 <0xFF | Firmware
Version>

0xFF for newer devices.
For legacy devices this is the firmware version of the Responder
device that was ALL-Linked.
 (Only valid when the IM is a Controller)

Dev Guide, Chapter 10 Page 246

August 16, 2007 © 2005-2007 SmartLabs Technology

ALL-Link Database Management

Get First ALL-Link Record

Get First ALL-Link Record (0x69)

What it does Returns the first record in the IM’s ALL-Link Database. The data will follow in an
ALL-Link Record Response249 message.

What you send 2 bytes.

What you’ll get 3 bytes.

LED indication None.

Related Commands IM 0x57 ALL-Link Record Response249
IM 0x6A Get Next ALL-Link Record247
IM 0x6C Get ALL-Link Record for Sender248

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x69 IM Command Number

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x69 Echoed IM Command Number

3 <ACK/NAK> 0x06 (ACK) if an ALL-Link Record Response249 follows
0x15 (NAK) if the database is empty.

Note

Use this to begin scanning the IM’s ALL-Link Database. Follow up with Get Next ALL-Link Record247
Commands until you receive a NAK.

In the IM Factory Reset State221 the ALL-Link Database will be cleared, so you will receive a NAK.

Dev Guide, Chapter 10 Page 247

August 16, 2007 © 2005-2007 SmartLabs Technology

Get Next ALL-Link Record

Get Next ALL-Link Record (0x6A)

What it does Returns the next record in the IM’s ALL-Link Database. The data will follow in an
ALL-Link Record Response249 message.

What you send 2 bytes.

What you’ll get 3 bytes.

LED indication None.

Related Commands IM 0x57 ALL-Link Record Response249
IM 0x69 Get First ALL-Link Record246
IM 0x6C Get ALL-Link Record for Sender248

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x6A IM Command Number

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x6A Echoed IM Command Number

3 <ACK/NAK> 0x06 (ACK) if an ALL-Link Record Response249 follows
0x15 (NAK) if there are no more records.

Note

Use this to continue scanning the IM’s ALL-Link Database until you receive a NAK. Begin the scan up with
a Get First ALL-Link Record246 Command.

In the IM Factory Reset State221 the ALL-Link Database will be cleared, so you will receive a NAK.

Dev Guide, Chapter 10 Page 248

August 16, 2007 © 2005-2007 SmartLabs Technology

Get ALL-Link Record for Sender

Get ALL-Link Record for Sender (0x6C)

What it does This gets the record from the IM’s ALL-Link Database for the last INSTEON
message received from an INSTEON device that is in the IM’s ALL-Link
Database. The data will follow in an ALL-Link Record Response249 message.

What you send 2 bytes.

What you’ll get 3 bytes.

LED indication None.

Related Commands IM 0x57 ALL-Link Record Response249
IM 0x69 Get First ALL-Link Record246
IM 0x6A Get Next ALL-Link Record247

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x6C IM Command Number

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x6C Echoed IM Command Number

3 <ACK/NAK> 0x06 (ACK) if an ALL-Link Record Response249 follows
0x15 (NAK) if the last INSTEON message received had a From
Address not in the IM’s ALL-Link Database.

Note

If you send this after receiving an INSTEON message from an INSTEON device that is not in the IM’s ALL-
Link Database, you will receive a NAK in response.

Sending a Get Next ALL-Link Record247 Command after this will return the ALL-Link Record that follows
this one, but your actual position within the ALL-Link Database will be unknown (unless you are at the
end).

In the IM Factory Reset State221 the ALL-Link Database will be cleared, so you will receive a NAK.

Dev Guide, Chapter 10 Page 249

August 16, 2007 © 2005-2007 SmartLabs Technology

ALL-Link Record Response

ALL-Link Record Response (0x57)

What it does Provides a record from the IM’s ALL-Link Database.

When you’ll get this You get this when you have requested it, in response to a Get First ALL-Link
Record246 a Get Next ALL-Link Record247 , or a Get ALL-Link Record for Sender248
Command.

What you’ll get 10 bytes.

LED indication None.

Related Commands IM 0x69 Get First ALL-Link Record246
IM 0x6A Get Next ALL-Link Record247
IM 0x6C Get ALL-Link Record for Sender248

Message Sent from IM to Host

Byte Value Meaning

1 0x02 Start of IM Command

2 0x57 IM Command Number

3 <ALL-Link Record Flags> ALL-Link Database control flags for this ALL-Link Record

4 <ALL-Link Group> ALL-Link Group Number for this ALL-Link Record

5 <ID high byte> INSTEON ID high byte for device ALL-Linked to

6 <ID middle byte> INSTEON ID middle byte for device ALL-Linked to

7 <ID low byte> INSTEON ID low byte for device ALL-Linked to

8 <Link Data 1> Link Information (varies by device ALL-Linked to)

9 <Link Data 2> Link Information (varies by device ALL-Linked to)

10 <Link Data 3> Link Information (varies by device ALL-Linked to)

Note

See the section INSTEON ALL-Link Database101 above for details about the contents of an ALL-Link Record.

Dev Guide, Chapter 10 Page 250

August 16, 2007 © 2005-2007 SmartLabs Technology

Manage ALL-Link Record

Manage ALL-Link Record (0x6F)

What it does Updates the IM’s ALL-Link Database with the ALL-Link Record information you
send. Use caution with this Command—the IM does not check the validity of the
data.

What you send 11 bytes.

What you’ll get 12 bytes.

LED indication None.

Related Commands IM 0x57 ALL-Link Record Response249

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x6F IM Command Number

What to do with the ALL-Link Record

 0x00 Does an ALL-Link Record exist for this ID + ALL-Link Group?
You will receive an ACK (0x06) at the end of the returned
message if the ALL-Link Record exists, or else a NAK (0x15)
if it doesn’t. If the record exists, the IM will return it in an
ALL-Link Record Response249 message.

 0x01 Search for the next ALL-Link Record following the one found
using Control Code 0x00 above. This allows you to find both
Controller and Responder records for a given ID + ALL-Link
Group. Be sure to use the same ID + ALL-Link Group (bytes
5 – 8) as you used for Control Code 0x00.
You will receive an ACK (0x06) at the end of the returned
message if the ALL-Link Record exists, or else a NAK (0x15)
if it doesn’t. If the record exists, the IM will return it in an
ALL-Link Record Response249 message.

 0x20 Update an ALL-Link Record with a matching <ALL-Link
Group>, <ID high byte>, <ID middle byte>, <ID low
byte>, and bit 6 (1 = Controller, 0 = Responder) of the
<ALL-Link Record Flags> byte.
If there is a matching ALL-Link Record, then the IM will
update the <ALL-Link Record Flags>, <Link Data 1>, <Link
Data 2>, and <Link Data 3> fields and return an ACK
(0x06) at the end of the message it returns to you.
If no ALL-Link Record matches, the IM will return a NAK
(0x15) at the end of the message it returns to you.

 0x40 Add new Controller (master) ALL-Link Record. Returns a
NAK (0x15) if the ALL-Link Record already exists.

 0x41 Add new Responder (slave) ALL-Link Record. Returns a NAK
(0x15) if the ALL-Link Record already exists.

3 <Control Code>

 0x80 Delete ALL-Link Record

4 <ALL-Link Record Flags> ALL-Link Database control flags for this ALL-Link Record

5 <ALL-Link Group> ALL-Link Group Number for this ALL-Link Record

6 <ID high byte> INSTEON ID high byte for device ALL-Linked to

7 <ID middle byte> INSTEON ID middle byte for device ALL-Linked to

8 <ID low byte> INSTEON ID low byte for device ALL-Linked to

9 <Link Data 1> Link Information: varies by device ALL-Linked to

10 <Link Data 2> Link Information: varies by device ALL-Linked to

11 <Link Data 3> Link Information: varies by device ALL-Linked to

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

Dev Guide, Chapter 10 Page 251

August 16, 2007 © 2005-2007 SmartLabs Technology

Manage ALL-Link Record (0x6F)

2 0x6F Echoed IM Command Number

3 <Control Code> Echoed <Control Code>

4 <ALL-Link Record Flags> Echoed <ALL-Link Record Flags>

5 <ALL-Link Group> Echoed <ALL-Link group>

6 <ID high byte> Echoed <ID high byte>

7 <ID middle byte> Echoed <ID middle byte>

8 <ID low byte> Echoed <ID low byte>

9 <Link Data 1> Echoed <Link Data 1>

10 <Link Data 2> Echoed <Link Data 2>

11 <Link Data 3> Echoed <Link Data 3>

12 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly.
0x15 (NAK) if an error occurred, if a searched-for ALL-Link Record
doesn’t exist, or if an ALL-Link Record to be added already exists.

Notes

See the section INSTEON ALL-Link Database101 above for details about the contents of an ALL-Link Record.

Please be aware that you can damage the IM’s ALL-Link Database if you misuse this Command. For
instance, if you use a <Control Code> of 0x20 to zero bit 1 of the <ALL-Link Record Flags> byte in the
first ALL-Link Record, the ALL-Link Database will then appear empty.

Dev Guide, Chapter 10 Page 252

August 16, 2007 © 2005-2007 SmartLabs Technology

IM Status Management

Reset the IM

Reset the IM (0x67)

What it does Puts the IM into the IM Factory Reset State221, which clears the entire ALL-Link
Database.

What you send 2 bytes.

What you’ll get 3 bytes.

LED indication While the reset procedure is being processed, the Status LED will turn off. At
the conclusion of the reset procedure, the Status LED will illuminate steadily.

Related Commands IM 0x55 User Reset Detected253

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x67 IM Command Number

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x67 Echoed IM Command Number

3 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly
0x15 (NAK) if an error occurred

Notes

The IM will send the <ACK/NAK> byte after it erases the EEPROM.
 ~20 seconds for models with external EEPROM
 ~2 seconds for models with no external EEPROM

See the IM Factory Reset State221 section for complete information on the state of the IM after sending
this Command.

Dev Guide, Chapter 10 Page 253

August 16, 2007 © 2005-2007 SmartLabs Technology

User Reset Detected

User Reset Detected (0x55)

What it does Reports that the user manually put the IM into the IM Factory Reset State221.

When you’ll get this The user held down the IM’s SET Button for at least 10 seconds when power was
first applied.

What you’ll get 2 bytes (not until about 20 seconds after applying power to the IM with the SET
Button held down).

LED indication The LED will turn off for about 20 seconds. Once the LED turns back on the
reset is complete.

Related Commands IM 0x67 Reset the IM252

Message Sent from IM to Host

Byte Value Meaning

1 0x02 Start of IM Command

2 0x55 IM Command Number

Notes

The IM will send this message after it erases the EEPROM.
 ~20 seconds for models with external EEPROM
 ~2 seconds for models with no external EEPROM

See the IM Factory Reset State221 section for complete information on the state of the IM after receiving
this message.

Dev Guide, Chapter 10 Page 254

August 16, 2007 © 2005-2007 SmartLabs Technology

Get IM Configuration

Get IM Configuration (0x73)

What it does Returns the IM’s Configuration Flags byte. Also returns two spare bytes of data
reserved for future use.

What you send 2 bytes.

What you’ll get 6 bytes.

LED indication None.

Related Commands IM 0x6B Set IM Configuration255

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x73 IM Command Number

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x73 Echoed IM Command Number

3 <IM Configuration Flags> IM’s Configuration Flags. See Set IM Configuration255 for bit
definitions.

4 <Spare 1> 0x00, reserved for future use

5 <Spare 2> 0x00, reserved for future use

6 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly
0x15 (NAK) if an error occurred

Note

Because Set IM Configuration255 sets all of the <IM Configuration Flags> at once, to change an individual
bit, first use this Command to determine the current state of all of the <IM Configuration Flags>.

Dev Guide, Chapter 10 Page 255

August 16, 2007 © 2005-2007 SmartLabs Technology

Set IM Configuration

Set IM Configuration (0x6B)

What it does Allows you change operating parameters of the IM.

What you send 3 bytes.

What you’ll get 4 bytes.

LED indication None.

Related Commands IM 0x73 Get IM Configuration255
IM 0x54 Button Event Report260
IM 0x50 INSTEON Standard Message Received231
IM 0x51 INSTEON Extended Message Received232
IM 0x6D LED On261
IM 0x6E LED Off262

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x6B IM Command Number

Flag byte containing Configuration Flags that affect IM operation.
These all default to 0.

 Bit 7 = 1 Disables automatic linking when the user pushes and
holds the SET Button (see Button Event Report260).

 Bit 6 = 1 Puts the IM into Monitor Mode (see About Monitor
Mode256 in the Notes below).

 Bit 5 = 1 Disables automatic LED operation by the IM. The host
must now control the IM’s LED using LED On261 and LED
Off262.

 Bit 4 = 1 Disable host communications Deadman feature (i.e.
allow host to delay more than 240 milliseconds between
sending bytes to the IM). See IM RS232 Port
Settings219.

3 <IM Configuration Flags>

 Bits 3 - 0 Reserved for internal use. Set these bits to 0.

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x6B Echoed IM Command Number

3 <IM Configuration Flags> Echoed <IM Configuration Flags>

4 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly.
0x15 (NAK) if an error occurred.

Notes

When the IM is in the IM Factory Reset State221, the <IM Configuration Flags> will all be set to zero.

This Command sets all of the <IM Configuration Flags> at once. To change an individual bit, first use Get
IM Configuration255 to determine the current state of all of the <IM Configuration Flags>.

Dev Guide, Chapter 10 Page 256

August 16, 2007 © 2005-2007 SmartLabs Technology

Set IM Configuration (0x6B)

About Monitor Mode

Normally, the IM will only send the host an INSTEON Standard Message Received231 or INSTEON Extended
Message Received232 notification when it receives an INSTEON messages directed specifically to the IM.
There are three possibilities:

1. The IM received a Direct message with a To Address matching the IM’s INSTEON ID,
2. The IM received an ALL-Link Broadcast message sent to an ALL-Link Group that the IM belongs to

as a Responder (i.e. the message’s From Address and ALL-Link Group Number match a
Responder entry in the IM’s ALL-Link Database), or

3. The IM received an ALL-Link Cleanup message with a To Address matching the IM’s INSTEON ID
and the message’s From Address and ALL-Link Group Number match a Responder entry in the
IM’s ALL-Link Database.

In Monitor Mode, the IM will also notify the host of received INSTEON messages that contain a From
Address matching any INSTEON ID in the IM’s ALL-Link Database, even if the To Address does not match
the IM’s INSTEON ID or the IM does not belong to an ALL-Link Group associated with the message. In
other words, if the message originator is in the IM’s ALL-Link Database as either a Controller or
Responder, the IM will pass the message to the host even if it is not specifically directed to the IM. In this
way you can monitor messages between other INSTEON devices as long as the sender is in the IM’s ALL-
Link Database.

Please be aware that the IM may not always detect this traffic. If the message originator and addressee
are close to one another and the IM is farther away, the message originator may not cause the message
to hop enough times for the IM to hear it. To know for sure what an INSTEON device’s status is, you can
usually query it directly using an appropriate INSTEON Direct Command. For more information on
INSTEON Commands and the latest Command set, please download the current INSTEON Command
Tables Document9 from www.insteon.net.

http://www.insteon.net/�

Dev Guide, Chapter 10 Page 257

August 16, 2007 © 2005-2007 SmartLabs Technology

Get IM Info

Get IM Info (0x60)

What it does Identifies the IM’s 3 byte INSTEON ID, Device Category (DevCat), Device
Subcategory (SubCat), and firmware version.

What you send 2 bytes.

What you’ll get 9 bytes.

LED indication None.

Related Commands IM 0x66 Set Host Device Category258
IM 0x73 Get IM Configuration255
IM 0x6B Set IM Configuration255

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x60 IM Command Number

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x60 Echoed IM Command Number

3 <ID high byte> IM’s INSTEON ID high byte

4 <ID middle byte> IM’s INSTEON ID middle byte

5 <ID low byte> IM’s INSTEON ID low byte

6 <Device Category> IM’s Device Category

7 <Device Subcategory> IM’s Device Subcategory

8 <Firmware Version> IM’s Firmware Version

9 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly
0x15 (NAK) if an error occurred

Note

Using the Set Host Device Category258 Command to change the host’s DevCat and SubCat will only affect
the data transmitted by the IM to other INSTEON devices during ALL-Linking.
When the host sends this Command to the IM, the IM will return the original DevCat, SubCat and firmware
version hard-coded into the IM’s firmware at the factory.

Dev Guide, Chapter 10 Page 258

August 16, 2007 © 2005-2007 SmartLabs Technology

Set Host Device Category

Set Host Device Category (0x66)

What it does Lets you set the Device Category (DevCat) and Device Subcategory (SubCat) of
the host device connected to the IM.

What you send 5 bytes.

What you’ll get 6 bytes.

LED indication None.

Related Commands IM 0x60 Get IM Info257

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x66 IM Command Number

3 <Device Category> INSTEON Device Category (DevCat) of the host device connected to
the IM.

4 <Device Subcategory> INSTEON Device Subcategory (SubCat) of the host device connected
to the IM.

5 <0xFF | Firmware
Version>

0xFF
In legacy devices this byte represented a BCD-encoded firmware
version. The high nibble (4 bits) gave the major revision number
and the low nibble gave the minor revision.
In current devices use the INSTEON Product Data Request and
Product Data Response Commands to retrieve the firmware version
as user-defined data.

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x66 Echoed IM Command Number

3 <Device Category> Echoed <Device Category>

4 <Device Subcategory> Echoed <Device Subcategory>

5 <0xFF | Firmware
Version>

Echoed <0xFF> or <Firmware Version>

6 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly
0x15 (NAK) if an error occurred

Notes

For INSTEON compliance, you must obtain an approved DevCat and SubCat assignment for your host
product from SmartLabs.

The IM stores these values in EEPROM so they will not be erased if power is lost.

When the IM is in the IM Factory Reset State221, these values will be set to those hard-coded into the IM’s
firmware at the factory.

Using this Command to change the host’s DevCat and SubCat will only affect the data transmitted by the
IM to other INSTEON devices during ALL-Linking.
When the host sends a Get IM Info257 Command to the IM, the IM will return the original DevCat, SubCat
and firmware version hard-coded into the IM’s firmware at the factory.

For the latest list of assigned INSTEON DevCats, please download the INSTEON Device Categories and
Product Keys Document9 from www.insteon.net.

http://www.insteon.net/�

Dev Guide, Chapter 10 Page 259

August 16, 2007 © 2005-2007 SmartLabs Technology

RF Sleep

RF Sleep (0x72)

What it does Directs an RF IM to go into power saving sleep mode. To wake up the RF IM,
send it one byte of serial data.

What you send 2 bytes.

What you’ll get 3 bytes.

LED indication None.

Related Commands None.

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x71 IM Command Number

3 <Command 1 Data> Data byte to place into the Command 1 field 2 of the ACK response.

4 <Command 2 Data> Data byte to place into the Command 2 field 2 of the ACK response.

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x71 Echoed IM Command Number

3 <Command 1 Data> Echoed <Command 1 Data>

4 <Command 2 Data> Echoed <Command 2 Data>

5 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly.
0x15 (NAK) if an error occurred.

Notes

It does not matter what byte you send serially to wake up the RF IM.

When the RF IM wakes up, it will reinitialize, but memory will not be altered as it would be in the IM
Factory Reset State221. Wait a minimum of 40 milliseconds before sending any further IM Serial
Commands.

Dev Guide, Chapter 10 Page 260

August 16, 2007 © 2005-2007 SmartLabs Technology

IM Input/Output

Button Event Report

Button Event Report (0x54)

What it does Reports user SET Button events.

When you’ll get this The user operates the SET Button, or if they exist, Button 2 or Button 3.

What you’ll get 3 bytes.

LED indication If the event is SET Button Press and Hold the IM will automatically go into ALL-
Linking mode which will cause the LED to blink continuously at a rate of ½
second on and ½ second off. Automatic linking may be turned off by setting IM
Configuration Flags bit 7 (see Set IM Configuration255).

Related Commands IM 0x53 ALL-Linking Completed245
IM 0x64 Start ALL-Linking243
IM 0x65 Cancel ALL-Linking244

Message Sent from IM to Host

Byte Value Meaning

1 0x02 Start of IM Command

2 0x54 IM Command Number

Indicates the type of SET Button event that occurred.

 0x02 The SET Button was Tapped

 0x03 There was a SET Button Press and Hold for more than three
seconds.
This automatically puts the IM into ALL-Linking mode unless
IM Configuration Flags bit 7 is set.

 0x04 The SET Button was released after a SET Button Press and
Hold event was recorded.

 0x12 Button 2 was Tapped

 0x13 There was a Button 2 Press and Hold for more than three
seconds.

 0x14 Button 2 was released after a Button 2 Press and Hold event
was recorded.

 0x22 Button 3 was Tapped

 0x23 There was a Button 3 Press and Hold for more than three
seconds.

3 <Button Event>

 0x24 Button 3 was released after a Button 3 Press and Hold event
was recorded.

Dev Guide, Chapter 10 Page 261

August 16, 2007 © 2005-2007 SmartLabs Technology

LED On

LED On (0x6D)

What it does Turns on the IM’s LED if IM Configuration Flags bit 5 = 1.

What you send 2 bytes.

What you’ll get 3 bytes.

LED indication The LED will go on.

Related Commands IM 0x6B Set IM Configuration255
IM 0x6E LED Off262

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x6D IM Command Number

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x6D Echoed IM Command Number

3 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly.
0x15 (NAK) if an error occurred or IM Configuration Flags bit 5 = 0.

Dev Guide, Chapter 10 Page 262

August 16, 2007 © 2005-2007 SmartLabs Technology

LED Off

LED Off (0x6E)

What it does Turns off the IM’s LED if IM Configuration Flags bit 5 = 1.

What you send 2 bytes.

What you’ll get 3 bytes.

LED indication The LED will go off.

Related Commands IM 0x6B Set IM Configuration255
IM 0x6D LED On261

Command Sent from Host to IM

Byte Value Meaning

1 0x02 Start of IM Command

2 0x6E IM Command Number

Message Returned by IM to Host

Byte Value Meaning

1 0x02 Echoed Start of IM Command

2 0x6E Echoed IM Command Number

3 <ACK/NAK> 0x06 (ACK) if the IM executed the Command correctly.
0x15 (NAK) if an error occurred or IM Configuration Flags bit 5 = 0.

Dev Guide, Chapter 11 Page 263

August 16, 2007 © 2005-2007 SmartLabs Technology

Chapter 11 — SALad Language
Documentation

The INSTEON PowerLinc™ V2 Controller (PLC) and other planned INSTEON devices
contain an embedded language interpreter, called SALad, that allows programming
of complex behavior into SALad-enabled devices. See SALad Applications33 in
Chapter 4 — INSTEON Application Development Overview27 for a description of the
application development process using SALad.

The SALad language is designed to make execution of INSTEON Internal Applications
fast, while keeping the size of the programs small.

SALad is event driven. Examples of events that can occur in a PLC include reception
of an INSTEON message or an X10 Command, expiration of a timer, or pushing the
SET Button. As events occur, the PLC firmware posts event handles to an event
queue. The firmware then starts the SALad program with the current event handle
located in a specific memory location called NTL_EVENT. The SALad program
inspects NTL_EVENT in order to determine what action to take based on the event
that occurred. Most SALad programming is just a matter of writing event-handling
routines, or modifying the routines found in sample applications.

The SALad Integrated Development Environment (IDE) makes writing and debugging
SALad programs fast and easy. Besides a built-in SALad editor, compiler, and
debugger, the IDE contains an integrated set of INSTEON-specific tools that give the
programmer access to every aspect of the INSTEON environment.

In This Chapter

SALad Programming Guide264
Shows the structure of a SALad program, lists sample ‘Hello World’ programs,
and gives tips for developing SALad applications.

SALad Language Reference275
Lists the register locations critical to SALad, and describes the SALad instruction
set and addressing modes.

SALad Integrated Development Environment User’s Guide287
Describes a comprehensive software tool used for writing and debugging
embedded SALad applications.

Dev Guide, Chapter 11 Page 264

August 16, 2007 © 2005-2007 SmartLabs Technology

SALad Programming Guide
In This Section

Structure of a SALad Program265
Describes the basic elements of a SALad program.

The SALad Version of Hello World267
Describes a step-by-step re-creation of the classic ‘Hello World’ program in
SALad.

SALad Event Handling268
Describes the SALad event handling process.

Hello World 2 – Event Driven Version270
Gives the event driven version of a SALad ‘Hello World’ program.

SALad coreApp Program272
Describes the default SALad application that comes factory-installed in the PLC.

SALad Timers273
Explains how to set up and handle timer events in SALad.

SALad Remote Debugging274
Describes how IBIOS and the SALad IDE support SALad program debugging.

Overwriting a SALad Application274
Explains how to disable code space write protection in order to download a new
SALad program.

Preventing a SALad Application from Running274
Explains how to prevent a SALad program under development from executing
possibly faulty code.

Dev Guide, Chapter 11 Page 265

August 16, 2007 © 2005-2007 SmartLabs Technology

Structure of a SALad Program
Application Header

All SALad applications require a program header for program verification. This
header can have many pieces of information in it, but it must contain the application
verification data.

Starting at address 0x0210 (see Flat Memory Map170), there are 8 bytes of data that
define a region of code that will not be altered during execution. This is used to test
the application for possible corruption.

Address Register and Bits Description

0x0210 ⇒
0x0211

APP_ADDR_TEST Address of range of application for verification test

0x0212 ⇒
0x0213

APP_LEN_TEST Length of range of application for verification test

0x0214 ⇒
0x0215

APP_CHECK_TEST Two’s complement checksum of range of application for
verification test

0x0216 ⇒
0x0217

APP_END Top of currently loaded SALad application. EEPROM is write-
protected from 0x0200 to the address contained here. Set
0x16B bit 7 to enable over-writing.

APP_ADDR_TEST is the address of the beginning of the application code, normally
0x0230. APP_LEN_TEST is the length of the region to be tested on device
initialization, normally the length of the application. APP_CHECK_TEST is a two’s
complement checksum of that region. If you are using the SALad IDE, it will fill in
this number for you. APP_END is the address of the last byte-plus-one in the
currently loaded application, and is used to write-protect the EEPROM code segment
(see Overwriting a SALad Application274).

When the PLC is reset, IBIOS uses the checksum to verify the SALad program before
running it. If it is corrupt, IBIOS will flash the PLC’s LED at about 2 Hz. If the
application is valid, the LED will be lit continuously.

An Application Header structure using literal values might look like this:
ORG 0x210
 DATA 0x0230 ; address of beginning of application
 DATA 0x000a ; length of application
 DATA 0x0041 ; checksum of verification region
 DATA 0x023b ; end of application

If you are using the SALad IDE, you can use labels and skip filling in the checksum,
like this:
ORG 0x0210
;=======Application Header================================
 DATA Start ;Beginning of application
 DATA App_End-Start ;Length of application
 DATA 0x00, 0x00 ;Two’s complement checksum
 DATA App_End ;End of application

Program Body
The general structure of a SALad program is similar to that of other low-level
assembly programming languages, with varying details depending on the application.
As a stand-alone language, SALad has no specific structural requirements. However,

Dev Guide, Chapter 11 Page 266

August 16, 2007 © 2005-2007 SmartLabs Technology

most INSTEON applications are event-driven, requiring that SALad event handlers
follow a definite structural organization.

For a simple direct SALad application, start the program at 0x0237, which is the
standard entry vector for Static IBIOS Events185. When the PLC is reset (either by
power cycling or a reset Command), the SALad application will be started with an
initialization EVNT_INIT (0x00) IBIOS Event posted to the event queue.

It is possible to write a SALad application without event handlers, but you must then
poll all hardware for a change of state, and SALad Timers273 will not work without
event processing.

By far the easiest way to write SALad applications is use the IDE as explained in the
SALad Integrated Development Environment User’s Guide287 to modify the event
handlers in the open-source SALad coreApp Program272.

Dev Guide, Chapter 11 Page 267

August 16, 2007 © 2005-2007 SmartLabs Technology

The SALad Version of Hello World
The SALad language contains general Commands that are useful for most SALad-
enabled INSTEON products. Any commands that are unique to a subset of the
product line are provided through the API (Application Program Interface) feature.
This allows custom firmware and commands to be added to the SALad language
without altering the core SALad engine.

In this example, the RS232 port is utilized to send a Hello World! ASCII message.
Because the RS232 port is not found in all the SmartLabs products, these c are
provided as API calls. In this case, we will use the API_RS_SendStr command which
has a command code of 0x82. The format of this command is the API code (0x0A)
followed by the command code (0x82) followed by the 2-byte address of the data
containing the message to send.

When this example is executed, the output will be to the RS232 Port at 4800 Baud, 8
bits, 1 stop bit, and no parity. The application looks like this:

ORG 0x0210
;=======Application Header================================
 DATA Start ;Beginning of application
 DATA App_End-Start ;Length of application
 DATA 0x00, 0x00 ;Two’s complement checksum
 DATA App_End ;End of application

ORG 0x0237
;=======Application Code==================================
Start
 API 0x82, Message ;Send Message to RS232 port
 JUMP Start ;Loop non-stop
Message
 DATA "Hello "

DATA "World!"
 DATA 0x0D,0x0A,0x00 ;Zero terminates string
App_End

Dev Guide, Chapter 11 Page 268

August 16, 2007 © 2005-2007 SmartLabs Technology

SALad Event Handling
As events occur, IBIOS posts messages to a message queue that the SALad
application can respond to for processing. When SALad is idle, the event processor
continually looks for new events to process. When one appears, IBIOS puts the
Event Handle in the NTL_EVENT register and then calls SALad at one of two possible
vectors:

 0x0230 – for Timer Events (see SALad Timers273)

 0x0237 – for Static Events (see IBIOS Events185)

Upon entry, the SALad application must process the event handle in NTL_EVENT in
order to run the correct event handler. In the following code, taken from the SALad
coreApp Program272, the event handle is used as an index into a table of addresses
that point to the beginning of the event handling routines.

;=======Register Definitions==============================
APP_TMP_H EQU 0x006E ;These stay alive only until
APP_TMP_L EQU 0x006F ;the first CALL. They are

;used for the Event handler.

ORG 0x0210
;=======Application Header================================

DATA Start ;Beginning of application
 DATA App_End-Start ;Length of application
 DATA 0x00, 0x00 ;Two’s complement checksum

ORG 0x0230
;=======Event Process Code================================
Start
StartTimer
 JUMP ProcessTimer ;jump to Timer process

StartEvent
 MOVE NTL_EVENT, APP_TMP_L ;setup event offset
 MUL #0x0002, APP_TMP_H ;multiply by 2 for
 ;word offset (16bit)

ADD #EventJmpTbl, APP_TMP_H ;add table address 0243:
 ;to offset (16bit)

 JUMP ProcessEvent ;process table entry

ProcessTimer
 MOVE NTL_EVENT, APP_TMP_L ;setup event offset
 MUL #0x0002, APP_TMP_H ;multiply by 2 for
 ;word offset (16bit)
 ADD #EventJmpTbl,APP_TMP_H ;add table address 0256:
 ;to offset (16bit)
ProcessEvent
 MOVE$ @APP_TMP_H,APP_TMP_H,2 ;get indirect pointer
 ;from table

JUMP @APP_TMP_H ;execute code at table
 ;entry
EventJmpTbl

DATA Event00 ;EVNT_INIT
DATA Event01 ;EVNT_IRX_MSG

 DATA Event02 ;EVNT_IRX_NACK
 DATA Event03 ;EVNT_XRX_MSG
 DATA Event04 ;EVNT_XRX_XMSG
 DATA Event05 ;EVNT_BTN_TAP
 DATA Event06 ;EVNT_BTN_HOLD
 DATA Event07 ;EVNT_BTN_REL
 DATA Event08 ;EVNT_ALARM
 DATA Event09 ;EVNT_MIDNIGHT

Dev Guide, Chapter 11 Page 269

August 16, 2007 © 2005-2007 SmartLabs Technology

 DATA Event0A ;EVNT_2AM
 DATA Event0B ;EVNT_SRX_COM

TimerJmpTbl
 DATA 0x00, 0x00 ;No Timer Events

;=======Static Events==============================
;-------EVNT_INIT
Event00
 END

;-------EVNT_IRX_MSG
Event01
 END

;-------EVNT_IRX_NACK
Event02
 END

;-------EVNT_XRX_MSG
Event03
 END

;-------EVNT_XRX_XMSG
Event04
 END

;-------EVNT_BTN_TAP
Event05
 END

;-------EVNT_BTN_HOLD
Event06
 END

;-------EVNT_BTN_REL
Event07
 END

;-------EVNT_ALARM
Event08
 END

;-------EVNT_MIDNIGHT
Event09
 END

;-------EVNT_2AM
Event0A
 END

;-------EVNT_SRX_COM - Serial Received a command
Event0B
 END

;======Timer Events================================
; No Timer Events
App_End

Dev Guide, Chapter 11 Page 270

August 16, 2007 © 2005-2007 SmartLabs Technology

Hello World 2 – Event Driven Version
The following example shows the “Hello World” program implemented as an event
driven process. This version prints “Hello World!” out the RS232 port each time the
SET Button is pressed. This demonstrates the processing of the EVNT_BTN_TAP
(0x0A) and EVNT_BTN_HOLD (0x0B) IBIOS Events185 that are generated when
the button is tapped or held. If the button is pressed for more than 350 ms, the
program will send “Good-Bye World!” instead.

When this example is executed, the output will be to the RS232 Port at 4800 Baud, 8
bits, 1 stop bit, and no parity. The program is a simple modification of the SALad
coreApp Program272 event processor shown in SALad Event Handling268.

;=======Register Definitions==============================
APP_TMP_H EQU 0x006E ;These stay alive only until
APP_TMP_L EQU 0x006F ;the first CALL. They are
 ;used for the Event handler.

ORG 0x0210
;=======Application Header================================
 DATA Start ;Beginning of application
 DATA App_End-Start ;Length of application
 DATA 0x00, 0x00 ;Two’s complement checksum

ORG 0x0230

;=======Event Process Code================================
Start
StartTimer
 JUMP ProcessTimer ;jump to Timer process

StartEvent
 MOVE NTL_EVENT, APP_TMP_L ;setup event offset
 MUL #0x0002, APP_TMP_H ;multiply by 2 for
 ;word offset (16bit)
 ADD #EventJmpTbl, APP_TMP_H ;add table address 0243:
 ;to offset (16bit)
 JUMP ProcessEvent ;process table entry
ProcessTimer
 MOVE NTL_EVENT, APP_TMP_L ;setup event offset
 MUL #0x0002, APP_TMP_H ;multiply by 2 for
 ;word offset (16bit)
 ADD #EventJmpTbl,APP_TMP_H ;add table address 0256:
 ;to offset (16bit)
ProcessEvent
MOVE$ @APP_TMP_H,APP_TMP_H,2 ;get indirect pointer
 ;from table
 JUMP @APP_TMP_H ;execute code at table
 ;entry
EventJmpTbl
 DATA Event00 ;EVNT_INIT
 DATA Event01 ;EVNT_IRX_MSG
 DATA Event02 ;EVNT_IRX_NACK
 DATA Event03 ;EVNT_XRX_MSG
 DATA Event04 ;EVNT_XRX_XMSG
 DATA Event05 ;EVNT_BTN_TAP
 DATA Event06 ;EVNT_BTN_HOLD
 DATA Event07 ;EVNT_BTN_REL
 DATA Event08 ;EVNT_ALARM
 DATA Event09 ;EVNT_MIDNIGHT
 DATA Event0A ;EVNT_2AM
 DATA Event0B ;EVNT_SRX_COM
TimerJmpTbl

Dev Guide, Chapter 11 Page 271

August 16, 2007 © 2005-2007 SmartLabs Technology

 DATA 0x00, 0x00 ;No Timer Events

;=======Static Events==============================
;-------EVNT_INIT
Event00
 END
;-------EVNT_IRX_MSG
Event01
 END
;-------EVNT_IRX_NACK
Event02
 END
;-------EVNT_XRX_MSG
Event03
 END
;-------EVNT_XRX_XMSG
Event04
 END
;-------EVNT_BTN_TAP
Event05
 API 0x82, Message1 ;Send Message to RS232 port
 END
;-------EVNT_BTN_HOLD
Event06
 API 0x82, Message2 ;Send Message to RS232 port
 END
;-------EVNT_BTN_REL
Event07
 END
;-------EVNT_ALARM
Event08
 END
;-------EVNT_MIDNIGHT
Event09
 END
;-------EVNT_2AM
Event0A
 END

;-------EVNT_SRX_COM - Serial Received a command
Event0B
 END

;======Timer Events================================
; No Timer Events
Message1
 DATA "Hello "
 DATA "World!"
 DATA 0x0D,0x0A,0x00 ;Zero terminates string
Message2
 DATA "Goodbye "
 DATA "World!"
 DATA 0x0D,0x0A,0x00 ;Zero terminates string
App_End

Dev Guide, Chapter 11 Page 272

August 16, 2007 © 2005-2007 SmartLabs Technology

SALad coreApp Program
As shipped by SmartLabs, the PowerLinc™ V2 Controller (PLC) contains a 1200-byte
SALad program called coreApp that performs a number of useful functions:

• When coreApp receives messages from INSTEON devices, it sends them to the
computing device via its serial port, and when it receives INSTEON-formatted
messages from the computing device via the serial port, it sends them out over
the INSTEON network.

• CoreApp handles ALL-Linking to other INSTEON devices and maintains a
Threaded ALL-Link Database (ALDB/T)105.

• CoreApp is event-driven, meaning that it can send messages to the computing
device based on IBIOS Events185 and SALad Timers273.

• CoreApp can send and receive X10 Commands.

• CoreApp sets the software realtime clock using the hardware realtime clock and
handles daylight savings time.

Several of the IBIOS Events listed in the IBIOS Event Summary Table185 and IBIOS
Serial Commands listed in the IBIOS Serial Command Summary Table197 require
SALad event handlers like those in coreApp in order to ensure realtime execution.

Source code for coreApp is available to developers to modify for their own purposes.
Using the tools described in the SALad Integrated Development Environment User’s
Guide287 to modify coreApp is by far the easiest way to develop your own SALad
applications. Once programmed with an appropriately modified SALad App, the PLC
can operate on its own without being connected to a computing device.

Dev Guide, Chapter 11 Page 273

August 16, 2007 © 2005-2007 SmartLabs Technology

SALad Timers
You can set up a SALad Timer Event by loading 2 bytes into a timer buffer. The first
byte, called the Timer Index, is the number of the timer handler routine that you
want to execute when the Timer Event fires. The second byte, called the Timer
Time, designates how much time you want to elapse from the time you set up the
Timer Event until the Timer Event fires. If the high bit of Timer Time is 0, the other
7 bits designate 1 to 127 seconds; if the high bit is 1, the other 7 bits designate 1 to
127 minutes. A Timer Time of 0x00 designates that the timer is disabled.

The default number of co-pending Timer Events that you can set up is four. If you
need more Timer Events, increase the pointer value stored in NTL_BUFFER at
0x0033 (see Flat Memory Map170) by two for each additional Timer Event you want to
support. NTL_BUFFER points to the end of the timer buffer, which begins at 0x0046.

You need to write a SALad timer handler routine for each Timer Index that you will
be using. Timer Index 1 will fire the first handler, Timer Index 2 will fire the second
handler, and so on.

There are four SALad instructions for setting up and removing Timer Events (see
Two-byte SALad Instructions283):

ONESHOT (Timer Index, Timer Time)
Set up a new Timer Event if there is no pre-existing Timer Event with the same
Timer Index. If there is such a Timer Event, replace its Timer Time value. After
this Timer Event fires, remove it by setting its Timer Index to 0x00.

TIMER (Timer Index, Timer Time)
Set up a new Timer Event if there is no pre-existing Timer Event with the same
Timer Index. If there is such a Timer Event, replace its Timer Time value. After
this Timer Event fires, disable it by setting its Timer Time to 0x00, but do not
remove it.

TIMERS (Timer Index, Timer Time)
Set up a new Timer Event unconditionally. After this Timer Event fires, disable it
by setting its Timer Time to 0x00, but do not remove it.

KILL (Timer Index)
If there is a pre-existing Timer Event with the same Timer Index, remove it by
setting its Timer Index to 0x00.

If you try to set up a Timer Event but there is no room in the timer buffer, the Timer
Event will not be set up. If this happened, the _NTL_BO buffer overrun flag (bit 1) of
NTL_STAT at 0x0075 will be 1.

Dev Guide, Chapter 11 Page 274

August 16, 2007 © 2005-2007 SmartLabs Technology

SALad Remote Debugging
It is possible to debug SALad applications remotely using either Serial (RS232 or
USB) or INSTEON communications. IBIOS provides the necessary support. See
IBIOS Remote Debugging215 for a full explanation of how this works at the low level.

The comprehensive debugging features built into the SALad IDE (see the SALad
Integrated Development Environment User’s Guide287) are built on this low level
IBIOS mechanism. Therefore, the easiest way to take advantage of remote SALad
debugging is to use the SALad IDE.

Overwriting a SALad Application
SALad code in EEPROM is write-protected from 0x0200 to the top of the SALad
application pointed to by APP_END, as shown in the Flat Memory Map170 excerpt
below. You must set the _RS_AppLock flag before you attempt to write to this area.

i1 Addr i2 Addr Register and Bits Description

RS_CONTROL Control flags for serial command interpreter 0x016B 0x0167

_RS_AppLock 3 _RS_AppLock

0x0216
⇒
0x0217

0x0216
⇒
0x0217

APP_END Top of currently loaded SALad application. EEPROM is
write-protected from 0x0200 to the address contained
here. Set 0x16B bit 7 to enable over-writing.

This mechanism is not implemented in PLC firmware versions earlier than 2.10K.

Preventing a SALad Application from
Running

While developing a SALad application that runs on the PLC, you may need to
manually prevent the SALad code from executing, because of faulty SALad code that
prevents serial communication.

To prevent SALad execution while allowing IBIOS to run normally, remove and then
re-apply power to the PLC while holding down the SET Button for 5 seconds. IBIOS
will then write the complement of the SALad program’s checksum to the SALad
checksum verification register. Since the SALad program’s checksum will not match
the complemented checksum, the SALad program will not run.

To restore the SALad checksum verification register to its correct value, just
complement it again by repeating the ‘apply power while holding the SET Button for
5 seconds’ procedure.

Dev Guide, Chapter 11 Page 275

August 16, 2007 © 2005-2007 SmartLabs Technology

SALad Language Reference
In This Section

SALad Memory Addresses276
Describes SALad’s usage of memory.

SALad Instruction Set277
Documents all SALad instructions and addressing modes.

Dev Guide, Chapter 11 Page 276

August 16, 2007 © 2005-2007 SmartLabs Technology

SALad Memory Addresses
SALad uses the same Flat Memory Addressing168 as IBIOS. See the Flat Memory
Map170 for a table of important memory locations.

See Structure of a SALad Program265 for the location of the SALad program itself and
the structure of its header.

SALad program flags appear in the register NTL_STAT as follows:

i1 Addr i2 Addr Register and Bits Description

NTL_STAT SALad Status Register

_DB_END 4 _DB_END

_DB_PASS 3 _DB_PASS

_NTL_DZ 2 _NTL_DZ

_NTL_BO 1 _NTL_BO

0x0075 0x0175

_NTL_CY 0 _NTL_CY

Dev Guide, Chapter 11 Page 277

August 16, 2007 © 2005-2007 SmartLabs Technology

SALad Instruction Set
The SALad instructions are designed to support all the processing needs of a basic
programming language. Additional device-specific functions can be defined using
Application Programming Interface (API) calls to firmware.

SALad universally supports access to or from RAM or EEPROM directly or indirectly.
Literal data can be provided for immediate operations. The Compare and Move
instructions have a block mode to perform string compares or block moves.

Indirect addressing modes support address pointers and jump tables.

In This Section

SALad Universal Addressing Module (UAM)278
Describes addressing modes of SALad instructions.

SALad Parameter Encoding279
Describes how parameters for SALad instructions are encoded.

SALad Instruction Summary Table281
Describes SALad instructions and parameters.

Dev Guide, Chapter 11 Page 278

August 16, 2007 © 2005-2007 SmartLabs Technology

SALad Universal Addressing Module (UAM)
The UAM is a mechanism for encoding addressing mode and parameter information
in the instructions. The commands have UAM-specific information in the low nibble
of the instruction. These bits define what kind of memory is being accessed and the
number of parameter bytes.

SALad instructions use Full-UAM, Half-UAM, or No-UAM encodings. Full-UAM
instructions take two parameters, Half-UAM instructions take one parameter, and
No-UAM instructions do not use the UAM at all and have no parameters.

These tables show how SALad instructions are UAM-encoded in a byte:

Full-UAM SALad Instruction

Command
Source

Parameter
Destination
Parameter

Mode

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

4-bit command identifier

0=8 bit
Parameter

1=16 bit
Parameter

0=8 bit
Parameter

1=16 bit
Parameter

00 = Direct to Direct
01 = Direct to Indirect
10 = Indirect to Direct
11 = Literal to Direct

Half-UAM SALad Instruction

Command Mode

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

7-bit command identifier
0=Direct
1=Indirect

No-UAM SALad Instruction

Command

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

8-bit command identifier

Dev Guide, Chapter 11 Page 279

August 16, 2007 © 2005-2007 SmartLabs Technology

SALad Parameter Encoding
Parameters are of types:

• Register

• Direct

• Indirect

• 8-bit Literal Value

• 16-bit Literal Value

A Register parameter is an 8-bit location in memory that is referenced by an offset
that is added to a base value stored in NTL_EVENT.

A Direct parameter is a parameter that is referenced by a 16-bit address in the Flat
Memory Map170.

An Indirect parameter is a pointer to a location in memory.

Literal values are constant values that are coded directly into the program.

In This Section

Parameter Reference Tables280
Contains reference tables for encoding SALad instructions.

Dev Guide, Chapter 11 Page 280

August 16, 2007 © 2005-2007 SmartLabs Technology

Parameter Reference Tables

Parameter Types
This table shows the types of parameters described above, whether they are 8 or 16-
bit, whether they refer to addresses relative to the Program Counter or relative to
the Absolute address in the Flat Memory Map170, and whether they are Indirect or
Direct.

Ref Description 8-bit or 16-bit Relative or
Absolute

Indirect or
Direct

Rn Direct Register Mode (n + NTL_REG) 8-bit Absolute Direct

@Rn Indirect Register Mode (n + NTL_REG) 8-bit Absolute Indirect

D Direct Mode (PC + D) 16-bit Relative Direct

@D Indirect Mode (PC + D) 16-bit Relative Indirect

#8 8-bit Literal 8-bit Absolute Direct

#16 16-bit Literal 16-bit Absolute Direct

Full-UAM Instruction Encoding
This table shows how to encode the low nibble for full UAM instructions (i.e.
instructions that take both source and destination parameters). Parameter
references are from the table above.

Command and Parameters Instruction
Code

Command and Parameters Instruction
Code

Command Rn, Rn 0x?0 Command D, Rn 0x?8

Command Rn, @Rn 0x?1 Command D, @Rn 0x?9

Command @Rn, Rn 0x?2 Command @D, Rn 0x?A

Command #8, Rn 0x?3 Command #16, Rn 0x?B

Command Rn, D 0x?4 Command D, D 0x?C

Command Rn, @D 0x?5 Command D, @D 0x?D

Command @Rn, D 0x?6 Command @D, D 0x?E

Command #8, D 0x?7 Command #16, D 0x?F

Half-UAM Instruction Encoding
This table shows how to encode half UAM instructions (i.e. instructions that take only
a destination parameter). Parameter references are from the table above.
Instruction Code is shown as 8-bit pattern.

Command and Parameters Instruction
Code

Command and Parameters Instruction
Code

Command D xxxxxxx0 Command @D xxxxxxx1

Dev Guide, Chapter 11 Page 281

August 16, 2007 © 2005-2007 SmartLabs Technology

SALad Instruction Summary Table

One-byte SALad Instructions
Command Code UAM Parameters Description

NOP 0x00 None No Operation

RET 0x01 None Return from call

END 0x02 None Return to System

Function 0x03 None Enable extended function
mode

API 0x04 None Execute external firmware
routines

8BIT 0x05 None Select 8 bit processing

16BIT 0x06 None Select 16 bit processing

HALT 0x07 None Halt SALad execution

RL 0x08⇒0x09 Half-UAM <dest> Rotate Left value stored in
dest by 1-bit

RR 0x0A⇒0x0B Half-UAM <dest> Rotate Right value stored in
dest by 1-bit

JUMP 0x0C⇒0x0D Half-UAM <dest> Jump to specified
destination relative to PC

CALL 0x0E⇒0x0F Half-UAM <dest> Call routine at specified
destination relative to PC

TEST 0x10⇒0x1F Half-UAM <dest><jump> Test bit in byte at
destination, jump if false

CLR 0x20⇒0x2F Half-UAM <dest> Clear bit in byte at
destination

SET 0x30⇒0x3F Half-UAM <dest> Set bit in byte at
destination

ADD 0x40⇒0x4F Full-UAM <source><dest> Add source to destination,
store result in destination

OR 0x50⇒0x5F Full-UAM <source><dest> OR source to destination,
store result in destination

AND 0x60⇒0x6F Full-UAM <source><dest> AND source to destination,
store result in destination

XOR 0x70⇒0x7F Full-UAM <source><dest> XOR source to destination,
store result in destination

COMP> 0x80⇒0x8F Full-UAM <source><dest><jump> Compare source greater to
destination, jump if false

COMP< 0x90⇒0x9F Full-UAM <source><dest><jump> Compare source less than
destination, jump if false

Dev Guide, Chapter 11 Page 282

August 16, 2007 © 2005-2007 SmartLabs Technology

Command Code UAM Parameters Description

LOOP- 0xA0⇒0xAF Full-UAM <source><dest><jump> Decrement destination,
branch while greater than
source

LOOP+ 0xB0⇒0xBF Full-UAM <source><dest><jump> Increment destination,
branch while less than
source

MOVE 0xC0⇒0xCF Full-UAM <source><dest> Move source to destination

COMP= 0xD0⇒0xDF Full-UAM <source><dest><jump> Compare source equal to
destination, jump if false

SUB 0xE0⇒0xEF Full-UAM <source><dest> Subtract source from
destination, store result in
destination

Dev Guide, Chapter 11 Page 283

August 16, 2007 © 2005-2007 SmartLabs Technology

Two-byte SALad Instructions
These are Extended Commands, preceded by 0x03.

Command Code UAM Parameters Description

ENROLL 0x03 0x00 None Enable Enrollment for 2 minutes

Starts 2-minute enrollment timer and
enables Enrollment command pass-
through.

a. Button must be pushed when this
command is executed

b. Timer is restarted when valid enrollment
command is received

c. Enrollment command generates a
unique event: EVNT_IRX_ENROLL or 0x07

NEXT 0x03 0x01 None Find next ALL-Link Group in ALL-Link
Database

SEND 0x03 0x02 None Send INSTEON

ENDPROC 0x03 0x03 None Skip parameter on stack and return

KILL 0x03 0x04 None <index> Delete pending timer event specified by
index from event queue

PAUSE 0x03 0x05 None <time> Pause for time in 25ms increments

Dev Guide, Chapter 11 Page 284

August 16, 2007 © 2005-2007 SmartLabs Technology

Command Code UAM Parameters Description

FIND 0x03 0x06 None <flags> Find record in database. These bits define
the field(s) of the record that you are
searching for in the Enrollment database.

Flags is defined as:

 DB_FLAGS
 76543210
 XXXXXXXX
 ID0-------------+|||||||
 ID1--------------+||||||
 ID2---------------+|||||
 Group--------------+||||
 Linear Search-------+|||
 Mode-----------------++|
 INSTEON Master/Slave---+

Search Mode (Mode bits):

00 Deleted
01 Other
10 INSTEON Slave
11 INSTEON Master

DB_Flags configuration examples:

EMPTY EQU 0x00 ; look for empty slot
 ; index is in DB_H

SLAVE EQU 0xE4 ; match ID, look for
 ; SLAVE, ID is in
 ; RxFrom0-RxFrom2

MASTER EQU 0xE6 ; match ID, look for
 ; MASTER, ID is in
 ; RxFrom0-RxFrom2

INSTEON EQU 0xE5; match ID, look for
 ; MASTER or SLAVE,
 ; ID is in RxFrom0-
 ; RxFrom2

MEMBER EQU 0x1C ; match group, look
 ; for SLAVE, index
 ; is in DB_0

GROUP EQU 0xF6 ; match ID and group,
 ; look for MASTER, ID
 ; is in RxFrom0-
 ; RxFrom2, group is
 ; in RxTo2

To Find a member of a local group, set
group number in DB_3 and execute:

FIND MEMBER

To Find either a Master or Slave INSTEON
record that matches the received
message, execute:

FIND INSTEON

X10 0x03 0x08 None <HC/UC><HC/com> Send X10 message

Dev Guide, Chapter 11 Page 285

August 16, 2007 © 2005-2007 SmartLabs Technology

Command Code UAM Parameters Description

LED 0x03 0x09 None <pattern><time> Flash LED; Pattern defines the blinking
pattern, and time specifies the duration of
the blinking from 0 to 255 seconds. For
example: LED 0x55 0x0A would make the
LED blink at 8Hz for 10 seconds; The delay
between blinks can be controlled by
writing to LED_DLY

RANDOM 0x03 0x0A None <limit><register> Generates random number between 0 and
limit and stores in register

RANDOMIZE 0x03 0x0B None <dest> Get next random number from generator
using 16 bit absolute address to an 8-bit
seed value and stores in NTL_RND

ONESHOT 0x03 0x0C None <index><time> Set One-Shot timer: Index is the event
number that the firmware stores in
NTL_EVENT when the timer expires; Time
is 0⇒127 seconds, or 2 minutes 8 seconds
⇒ 130 minutes 8 seconds if MSb is set.

TIMER 0x03 0x0D None <index><time> Set or Reset timer

TIMERS 0x03 0x0E None <index><time> Set multiple timers

Undefined 0x03 0x0F None

X10EXT 0x03 0x10⇒
0x03 0x11

Half-UAM <dest> Additional data for extended X10 message

SEND$ 0x03 0x20 ⇒
0x03 0x21

Half-UAM <dest> Send 9 byte INSTEON message located at
destination (from ID is inserted
automatically)

SENDEXT$ 0x03 0x30 ⇒
0x03 0x31

Half-UAM <dest> Send 23 byte INSTEON message located at
destination (from ID is inserted
automatically)

MUL 0x03 0x50⇒
0x03 0x5F

Full-UAM <source><dest> Multiply source to destination, store result
in destination and destination +1

DIV 0x03 0x60⇒
0x03 0x6F

Full-UAM <source><dest> Divide source into destination, store result
in destination

MOD 0x03 0x70⇒
0x03 0x7F

Full-UAM <source><dest> Divide source into destination, store
remainder in destination

PROC 0x03 0x80⇒
0x03 0x8F

Full-UAM <source><dest><jump> Place source on stack and call destination,
jump if _NTL_CY=0 upon return

MASK 0x03 0x90⇒
0x03 0x9F

Full-UAM <source><dest><jump> AND source to destination, jump if zero

COMP$> 0x03 0xA0⇒
0x03 0xAF

Full-UAM <source><dest><len>
<jump>

Compare source string greater to
destination string, jump if false

COMP$< 0x03 0xB0⇒
0x03 0xBF

Full-UAM <source><dest><len>
<jump>

Compare source string less than
destination string, jump if false

TJUMP 0x03 0xC0⇒
0x03 0xCF

Full-UAM <source><dest><limit>
source: <index>
dest: <base address>
limit: <end of table>

Increment destination, branch while less
than source

Dev Guide, Chapter 11 Page 286

August 16, 2007 © 2005-2007 SmartLabs Technology

Command Code UAM Parameters Description

TCALL 0x03 0xD0⇒
0x03 0xDF

Full-UAM <source><dest><limit>
source: <index>
dest: <base address>
limit: <end of table>

Decrement destination, branch while
greater than source

Dev Guide, Chapter 11 Page 287

August 16, 2007 © 2005-2007 SmartLabs Technology

SALad Integrated Development
Environment User’s Guide

The SALad Integrated Development Environment (IDE) is a powerful tool for
developing applications to run on SALad-enabled INSTEON devices. For information
about the SALad Language, refer to the SALad Programming Guide264 and SALad
Language Reference275 sections above.

The SALad IDE’s source code editor handles multiple files, using color to indicate
code context. In debug mode, programmers can use single-stepping, breakpoints,
tracing, and watches to find and fix coding errors quickly.

At the heart of the IDE is The SALad Compiler, which reads SALad language source
files and creates SALad object code, along with an error listing and symbol map.
Compiled object code can either be serially downloaded to a real SmartLabs
PowerLinc™ V2 Controller (PLC) plugged into the powerline, or else it can be run on a
virtual PLC simulated in software. Besides the virtual PLC, the IDE can also simulate
a virtual powerline environment with any number of virtual LampLinc™ devices
plugged into it, so that developers can create and test complex SALad applications
on a standalone PC before validating them in a real INSTEON environment.

Using an integrated set of INSTEON-specific tools, programmers can compose and
monitor INSTEON, X10, ASCII, or raw data messages, simulate PLC or realtime
clock/calendar events, and directly manipulate the PLC’s ALL-Link Database, all
without ever leaving the IDE.

In This Section

SALad IDE Quickstart288
Explains how to get started using the SALad IDE right away.

IDE Main Window291
Describes the IDE’s main menus and toolbar.

IDE Editor303
Gives the features of the IDE’s Editor.

IDE Watch Panel306
Explains how to use Watches during debugging.

IDE Options Dialog Box307
Discusses the IDE’s setup options.

IDE Windows and Inspectors315
Explains the many additional tools available in the IDE.

IDE Virtual Devices331
Describes how to use the software PLC Simulator, Virtual Powerline, and Virtual
LampLinc.

IDE Keyboard Shortcuts335
Shows how to use the keyboard to perform common actions in the IDE.

Dev Guide, Chapter 11 Page 288

August 16, 2007 © 2005-2007 SmartLabs Technology

SALad IDE Quickstart
Follow these steps to get familiar with the IDE quickly. The IDE works with a
SmartLabs PowerLinc™ V2 Controller, called a PLC for short. You can either use a
real PLC plugged into the powerline and connected to your PC via a USB or RS232
serial port, or else the IDE can simulate a virtual PLC in software. This quick tutorial
will get you connected to the PLC, then guide you through compiling, downloading,
testing and debugging a sample ‘Hello World’ SALad program

1. Connect the PowerLinc Controller.

If you are using a real PLC, connect a USB or RS232 serial cable from it to your
Windows PC, and then plug the PLC into an electrical outlet.

If you wish to use the PLC Simulator instead, simply turn it on by selecting PLC
Simulator from the IDE’s Mode menu.

2. Run the SALad IDE.

After installing the SALad IDE on your Windows PC, go to Start->Programs-
>SALad IDE->SALad IDE to launch the program.

3. Test the serial connection to the PLC.

When you run the IDE for the first time, a Startup Wizard will automatically help
you test the serial connection to the PLC. You can also launch the Startup Wizard
from the View menu.

If you would rather test the serial connection to the PLC manually, follow these
steps:

a. Click the Edit->Application Options menu item. An Options dialog box will
appear.

b. Under the Communications tab, select either USB or the COM (RS232)
port you are using to connect to the PLC. If you are using the PLC
Simulator, it does not matter what you select here.

c. Click the Connect Now button, which will establish the serial connection
and then automatically perform the same test as the Test Connection
button. After a short delay, a Successfully connected message should
appear next to the Test Connection button.

d. You do not have to press the Download Core Application button because
you will be downloading a different SALad application below.

e. Click OK to close the Options window.

4. Load the sample ‘Hello World’ SALad program.

In the IDE, press the Open toolbutton (or else click the File->Open… menu item),
then find and open HelloWorld1.sal in the Samples directory. A collection of files
will appear in the editor window, with each file under a different tab. The tab
labeled HelloWorld1 should automatically be selected after the files finish loading
into the editor.

Dev Guide, Chapter 11 Page 289

August 16, 2007 © 2005-2007 SmartLabs Technology

5. Mark HelloWorld1 as the Main Code Module.

Right-click on the HelloWorld1 tab and select Mark as Main Code Module. This
tells the compiler which file contains the beginning of the SALad application
program.

6. View the ASCII Communications Window.

Select the Comm Window tab at the bottom of the IDE in the Windows and
Inspectors section.

Under the Comm Window tab, select the ASCII Window tab to see text messages
sent from the PLC to the PC.

7. Compile and Download HelloWorld1.sal.

In the IDE, press the Compile/Download toolbutton, or else click the Project-
>Compile/Download menu item.

The IDE’s LED will turn yellow and a progress bar will indicate that
HelloWorld1.sal is being compiled and downloaded to the PLC. The IDE's LED will
turn green when the download is completed.

After the PLC receives the code, it will automatically reset and run the
downloaded HelloWorld1.sal program from the beginning.

The IDE’s ASCII Window will display the text:

Database Initialized

Core App Running

Core App Running

NOTE: If the PLC’s LED continues to flash on and off once per second after the
download, the SALad program failed its checksum test. Recheck the serial
connection and try the Compile/Download again.

8. Test the HelloWorld1.sal program.

Tap the PLC's SET Button (located above the LED) to fire the Button Tap SALad
event. The HelloWorld1 SALad program will respond to the event by sending an
ASCII message to the PC.

The IDE’s ASCII Window will display the text:

Core App Running-Button Pressed

9. Debug the HelloWorld1.sal program.

To the right of the toolbar, click the Debug Mode checkbox to begin a debugging
session. A watch window will appear to the left of the editor pane. In debug
mode, the PLC will report the address of its program counter to the IDE and
optionally stop on each line, allowing you to debug the code.

To try out the debugger, press the Fast Step toolbutton, and then tap the PLC's
SET Button again. This time, the IDE will step rapidly through the program in the

Dev Guide, Chapter 11 Page 290

August 16, 2007 © 2005-2007 SmartLabs Technology

editor and highlight each line of code that it executes.

You can cause the debugger to execute one line of code at a time by single
stepping. Try pressing the Single Step toolbutton, and then tap the PLC’s SET
Button. The editor will highlight the first line of SALad code to be executed.
Thereafter, each time you press the Single Step toolbutton, the highlighted line of
code will execute, then the editor will jump to and highlight the next line to be
executed after that one.

You can set (soft) breakpoints in the code by clicking on the green dots in the
margin at the left of the code. Active breakpoints are indicated by a red dot. To
clear a breakpoint, just click it again.

Try using a breakpoint by single-stepping a few lines into the code and setting a
breakpoint there. Press the Fast Step toolbutton to let the code finish executing,
and then press the PLC’s SET Button to fire a new event. The debugger will stop
at the breakpoint you set.

To run the debugger as fast as it will go, press the Run toolbutton. Soft
breakpoints will be ignored but code highlighting will still work. If you don’t want
the editor to jump around in the code as it executes, uncheck the Show CP check
box (CP means Code Point).

To exit the debugging session and allow the PLC to run normally, simply uncheck
Debug Mode.

10. Congratulations, you have compiled, downloaded, tested and debugged a
sample SALad program running on a PowerLinc Controller.

HelloWorld1.sal is built on a SALad coreApp Program272 called coreApp.sal that
provides basic INSTEON and X10 communication along with other essential
features such as initialization, serial communication, and timers. You can find
other sample SALad programs and templates in the SALad IDE\Samples and
SALad IDE\Code Templates directories.

11. Further steps.

You can become more familiar with INSTEON and X10 SALad programming by
reading this Developer’s Guide, trying out other sample SALad programs, and
using the debugger. Since SALad programs mostly consist of event handlers, the
easiest and safest way to write SALad code is to modify existing code, such as
coreUser.sal that already contains the necessary infrastructure.

SmartLabs and other leading developers are continuously creating new sample
and real-world SALad applications. Be sure to check the INSTEON Forum
frequently at http://www.insteon.net/sdk/forum/ for the latest information.

http://www.insteon.net/sdk/forum/�

Dev Guide, Chapter 11 Page 291

August 16, 2007 © 2005-2007 SmartLabs Technology

IDE Main Window
This is what the SALad IDE’s main window looks like. This section explains the IDE
Menus292 and IDE Toolbar301 at the top.

The IDE Editor303 is below the toolbar on the right. During debugging, the IDE Watch
Panel306 appears to the left of the Editor. You can access the various IDE Windows
and Inspectors315 at the bottom by clicking on the tabs.

You can drag the borders at the left and bottom of the Editor to resize the panes,
and you can instantly collapse or expand the Windows and Inspectors pane by
clicking at the top of it.

Dev Guide, Chapter 11 Page 292

August 16, 2007 © 2005-2007 SmartLabs Technology

IDE Menus
These are the main menus in the SALad IDE.

In This Section

Menu – File293
Opens and saves source and output files.

Menu – Edit295
Helps you navigate within your source code, find text, replace found text, and
modify IDE options.

Menu – View297
Changes the appearance of the IDE by displaying and hiding various parts of it.

Menu – Project298
Controls compilation options and loading of new firmware into the PLC.

Menu – Mode298
Switches between using a real PLC, a simulated PLC, or no PLC.

Menu – Virtual Devices299
Launches the Virtual Powerline and Virtual LampLinc devices for use with the PLC
Simulator.

Menu – Help300
Launches this Developer’s Guide in compiled help form, gives version information
about the IDE, lets you check for IDE updates, and links you to the INSTEON
Developer’s Forum.

Dev Guide, Chapter 11 Page 293

August 16, 2007 © 2005-2007 SmartLabs Technology

Menu – File
The File menu is for opening and saving source and output files.

 or Toolbutton Creates a new source code
file in the editor. A new blank file will appear under a new tab in the editor, labeled
unnamedx, where x will increment as necessary to provide a unique filename. To
save the new file under the name you really want it to have, use Save As….

 or Toolbutton Opens an existing source
code file in the editor.

 This is the same as Open… except the submenu
lets you choose from a list of the last files you opened.

 or Toolbutton (Keyboard Shortcut:
Ctrl-S) Saves the file currently displayed in the editor using the same name as
shown in the active tab (with an extension of sal), in the same directory from which
it was opened.

 Saves the file currently displayed in the editor,
using whatever name you choose, in whatever directory you choose.

 Saves all of the files under all tabs in the editor
in the same way that an individual file would be saved.

 This compiles your SALad program and saves it
as a binary file (with an extension of slb) in whatever directory and with whatever
name you specify.

 This compiles your SALad program and saves it
as a hexadecimal file (with an extension of hex) in whatever directory and with
whatever name you specify.

 This is a very convenient option for saving your
work and optionally sending it to someone else (or yourself). It will create a Zip file
containing your source code, then launch your emailer with the Zip file already
attached to a default message. If you don’t want to email the Zip file, just close the
emailer.

Dev Guide, Chapter 11 Page 294

August 16, 2007 © 2005-2007 SmartLabs Technology

 (Keyboard Shortcut: Ctrl-F4) Closes the file
currently displayed in the editor. This will not delete the file saved on disk (if there
is one).

 Closes all of the files currently open in the editor.
This will not delete any of the files saved on disk (if they exist). After all of the files
are closed, a new blank file will appear under a new tab in the editor, labeled
unnamedx, where x will increment as necessary to provide a unique filename.

 Launches the Options dialog box, which lets you
change various settings for the IDE. See IDE Options Dialog Box307 for details.

 This compiles your SALad program and saves it
as a binary file (with an extension of slb) in whatever directory and with whatever
name you specify.

 This saves the currently displayed source file in
the editor as a listing file (with the extension txt). The listing includes the
information in the ‘gutter’ at the left of the editor, which includes hex addresses,
bytecode and line numbers.

 This ends your IDE session and closes the
program. Be sure to save your work if you did not specify the Save all files on close
option in the Options – Saving313 dialog box.

Dev Guide, Chapter 11 Page 295

August 16, 2007 © 2005-2007 SmartLabs Technology

Menu – Edit
The Edit menu helps you navigate within your source code, find text, replace found
text, and modify IDE options.

 (Keyboard Shortcut: Alt-G) This lets you jump
to a specified line number in the source file currently displayed in the editor. The
editor will display the line highlighted for a few seconds after it jumps to it. If you
specify a line number beyond the end of the file, the editor will jump to the last line
in the file.

 If this option is checked, you can edit source files.
To disable editing, uncheck this option.

 Launches the Options dialog box, which lets you
change various settings for the IDE. See IDE Options Dialog Box307 for details.

 or Toolbutton (Keyboard Shortcut: Alt-F)
Launches the Find dialog box, which looks like this:

You use Ctrl-Down to find the next occurrence of the string you are finding, and
Ctrl-Up to find the previous occurrence.

 or Toolbutton (Keyboard Shortcut: Alt-R)
Launches the Find and Replace dialog box, which looks like this:

Dev Guide, Chapter 11 Page 296

August 16, 2007 © 2005-2007 SmartLabs Technology

You can use Ctrl-Down to find the next occurrence of the string you are finding, and
Ctrl-Up to find the previous occurrence.

Dev Guide, Chapter 11 Page 297

August 16, 2007 © 2005-2007 SmartLabs Technology

Menu – View
The View menu changes the appearance of the IDE by displaying and hiding various
parts of it.

 Check or uncheck this option to display or hide the
Windows and Inspectors tabs at the bottom of the IDE window. You can achieve the
same result by clicking on the Windows and Inspectors label bar.

 This gives a submenu that changes the appearance of
the information to the left of the source code in the editor. The submenu looks like
this:

You can check only one of the options. Full, the default, displays (from left to right)
hex addresses, hex bytecode, source code line numbers, and breakpoint markers, as
shown in the section IDE Editor303, below. If you check Extended, the gutter pane is
widened so you can see more of the bytecode. If you check any of the other
options, so will only what you selected. During debugging, you will not be able to set
breakpoints unless the Markers column is displayed.

 This launches the Startup Wizard that guides you
through setting up communications with your PLC. You can achieve the same results
manually by going to the Options – Communications310 menu.

Dev Guide, Chapter 11 Page 298

August 16, 2007 © 2005-2007 SmartLabs Technology

Menu – Project
The Project menu controls compilation and loading of new firmware into the PLC.

 (Keyboard Shortcut: F9 while not debugging)
This compiles your SALad program and downloads the compiled bytecode to your
PLC (which can be a real PLC or the PLC Simulator). The Compile/Download
toolbar button does the same thing.

 This lets you download a selected version of firmware
code to the PLC. Firmware object code has the file extension ump.

Menu – Mode
The Mode menu switches between using a real PLC, a simulated PLC, or no PLC. You
can select only one of the options.

 Select this option if you are connected to a real PLC. This
option is the default.

 Select this option if you are not connected to a PLC. You
will not be able to download or debug code while you are offline.

 Select this option if you wish to use the software PLC
Simulator. You can download code to the PLC Simulator and debug it just as you
would for a real PLC. See the PLC Simulator332 section below for more information.
While you are using the PLC Simulator you can also simulate a Virtual Powerline333
environment along with any number of Virtual LampLinc334 devices plugged into it.

Dev Guide, Chapter 11 Page 299

August 16, 2007 © 2005-2007 SmartLabs Technology

Menu – Virtual Devices
The Virtual Devices menu launches the virtual powerline and virtual LampLinc
devices for use with the PLC Simulator.

 This will launch a virtual LampLinc device simulated in
software. The virtual LampLinc will appear in a separate window. See Virtual
LampLinc334 for details.

 This will launch a virtual powerline environment simulated in
software. The virtual powerline will appear in a separate window. If you are going
to use the Virtual LampLinc, launch a Virtual Powerline first. See Virtual Powerline333
for details.

Dev Guide, Chapter 11 Page 300

August 16, 2007 © 2005-2007 SmartLabs Technology

Menu – Help
The Help menu launches a Developer’s Guide in compiled help form, gives version
information about the IDE, lets you check for IDE updates, and links you to the
INSTEON Developer’s Forum.

 This launches a Developer’s Guide in
compiled help format.

 This displays a screen like this one:

 This will automatically check for
newer versions of the IDE and update it if appropriate.

 This will open your web browser and
take you to www.insteon.net.

http://www.insteon.net/�

Dev Guide, Chapter 11 Page 301

August 16, 2007 © 2005-2007 SmartLabs Technology

IDE Toolbar
This is what the main Toolbar looks like:

This is what the individual toolbuttons do:

 Connect or Reconnect serially to the PLC.

 New File. Create a new SALad file (*.sal).

 Open File. Open a SALad file (*.sal) or SALad Template (*.salt).

 Save File. Save the current SALad file (*.sal) or SALad Template (*.salt).

 Reset. Reset the PLC by forcing an EVNT_INIT (0x00) IBIOS Event (see
IBIOS Event Details187, Note 1). This will start the SALad program with EVNT_INIT
(0x00) in its event queue.

 Stop. Stop execution of the SALad program.

 Pause. During debugging only, pause the SALad program at the next line of
code.

 Single Step. During debugging only, execute the next line of code in the
SALad program. This line is normally highlighted in the IDE.

 Fast Step to Next Breakpoint. During debugging only, execute one line of
code at a time, reporting each line executed, and stop at the next soft or hard
breakpoint.

 Run in Animate Mode. During debugging, run at top debugging speed,
reporting each line executed, and stop at the next soft or hard breakpoint or at the
end of the program. During normal execution, run at full speed and stop at the next
hard breakpoint or at the end of the program.

 Find. Find text in the currently displayed SALad program.

 Find and Replace. Find and replace text in the currently displayed SALad
program.

 Compile and Download. Compile the SALad program and download the
bytecode into the PLC over the serial port. If you right-click this button, the
following options appear:

1. Display differences between the
code to download and the code read back from the PLC.

Dev Guide, Chapter 11 Page 302

August 16, 2007 © 2005-2007 SmartLabs Technology

2. Download all files on the next
download instead of just incrementally downloading files that have changed.

3. Always download all files. This is
the default setting.

4. Read back the code image from
the PLC after the next code download.

 LED. This is an indicator only, not a button. After pressing the
Connect/Reconnect button, green means you are successfully connected to the PLC

and red means you are not connected. After pressing the Compile/Download
button, green means the program downloaded to the PLC successfully, red means
the program did not download successfully, and yellow means the program is
currently downloading.

 Go Back. Return to the previous SALad program location in the editor. Use
this after hot-jumping to another SALad program by right-clicking on a label.

There are two checkboxes, used for debugging:

 Enable/Disable Debugging Mode. When checked, you will be in
debugging mode and the Watch window will appear to the left of the edit window.
You can change the size of the Watch window by dragging the separator bar.

 Show Code Point. When you are debugging and Show CP is
checked, the editor will jump to whatever code line is executing and highlight that
line, even if the line is not on the currently displayed page. When Show CP is
unchecked, the currently displayed page will remain visible during execution.

The pulldown box works with the editor:

 Jump To Label. This pulldown box
contains all labels used in the SALad program. When you select a label from the
pulldown box, the editor will jump to the program location where the label first
appears. During editing and debugging, the label displayed in the pulldown box will
be the one that fits the current context.

Dev Guide, Chapter 11 Page 303

August 16, 2007 © 2005-2007 SmartLabs Technology

IDE Editor
The IDE editor handles multiple source files and displays SALad source code in
context-sensitive color. The screenshot below shows how an editing session would
typically appear.

You can change the appearance of the editor by right-clicking anywhere in the editor
pane and selecting Editor Properties…. This displays the Editor tab in the Options
dialog box. See the Options – Editor312 section for details.

You can change which columns of information are displayed in the ‘gutter’ using the
View->Gutter menu item (see Menu – View297 above).

Compiled SALad bytecode

Source code line numbers

Breakpoint marker (), executable marker ()

Labels, definitions, declarations start at column 1

Next line to execute highlighted during debugging

SALad program code

Hexadecimal address of executable code

SALad program files (e.g. core1x.sal, base.sal, cmds.sal)

Dev Guide, Chapter 11 Page 304

August 16, 2007 © 2005-2007 SmartLabs Technology

Right-clicking anywhere in the editor displays the following menu options:

 (Keyboard Shortcut: Ctrl-C) This
copies selected text to the clipboard.

 (Keyboard Shortcut: Ctrl-X) This
cuts selected text to the clipboard.

 (Keyboard Shortcut: Ctrl-V) This
Pastes text in the clipboard at the cursor location.

 (Keyboard Shortcut: Ctrl-A) This
selects all of the text in the current file.

 This sets the program counter so
that the next line to be executed will be where the cursor is, i.e. where you right-
clicked to get this popup menu.

 This sets the program counter so
that the next line to be executed will be where the caret is. The caret (a vertical
bar) is where you last left-clicked clicked with the cursor.

 Run the program from the Code
Point (the current address of the program counter) to the line where the cursor is,
i.e. where you right-clicked to get this popup menu.

 Run the program from the Code
Point (the current address of the program counter) to the line where the caret is.
The caret (a vertical bar) is where you last left-clicked clicked with the cursor.

 Add the variable under the caret to
the Watch Window. The caret (a vertical bar) is where you last left-clicked clicked
with the cursor. See IDE Watch Panel306 for details.

Dev Guide, Chapter 11 Page 305

August 16, 2007 © 2005-2007 SmartLabs Technology

 If there are any undefined labels in
your SALad program, this will insert them at the cursor position so you can define
them.

 This displays the Editor tab in the
Options dialog box, so you can change the way the editor looks and behaves. See
Options – Editor312 for details.

Dev Guide, Chapter 11 Page 306

August 16, 2007 © 2005-2007 SmartLabs Technology

IDE Watch Panel
The watch panel appears to the left of the editor during debugging sessions. You can
change its size by dragging the border between it and the editor.

You can add variables that you want to watch by clicking on a variable in the editor,
then right-clicking and choosing Add Watch in the popup menu.

Click the Refresh Page button to update all watches. If the Auto-Refresh on
SingleStep check box is checked, then single stepping during debugging (keyboard
shortcut F8) will update the watches after each step.

Check Indirect if the variable that you are watching contains a pointer to another
variable. The Watch Window will display then also display the contents of the
variable being pointed to.

The pulldown box lets you choose whether the watched address is the beginning of
an 8-bit variable, a 16-bit variable, an ASCII string, or a hex string. If it is an ASCII
or hex string, set the length of the string to display in the Len: box.

Reread and redisplay all memory watches
Automatically reread and redisplay
upon each Single Step (for debugging)

A single watch line:
NTL_EVENT (8 bits) is at address 0x0036,
which held 0xFF when last read

Font size for display

Address is that of a pointer to the watched address

Dev Guide, Chapter 11 Page 307

August 16, 2007 © 2005-2007 SmartLabs Technology

IDE Options Dialog Box
The Options Dialog Box has a number of tabs that look like this. The panels that the
various tabs display are explained below. You can launch the Options Dialog Box by
choosing the Edit->Applications Options… menu item.

The OK and Cancel buttons appear at the bottom of each panel, but they are not
shown in the figures below. Settings take effect when you push OK. If you push
Cancel the previous settings will remain in effect.

In This Section

Options – General308
Controls overall IDE behavior.

Options – Quick Tools308
A set of tools for working with the PLC’s firmware and ALL-Link Database.

Options – Debugging309
Contains controls for debugging sessions.

Options – Compiling309
Contains controls for the compiler.

Options – Communications310
Has setup options and tools to control communication with the PLC.

Options – Unit Defaults311
Controls settings for the PLC firmware.

Options – Directories311
Sets file search paths.

Options – Editor312
Controls how the editor looks and behaves.

Options – Saving313
Sets file saving and backup options.

Options – Loading314
Sets file loading options.

Options – Project314
Designates the file containing the beginning of your SALad program.

Dev Guide, Chapter 11 Page 308

August 16, 2007 © 2005-2007 SmartLabs Technology

Options – General
The General tab controls overall IDE behavior.

Currently the only option is to show the Splash Screen when the program starts.
This defaults to off after the first time the program is run.

Options – Quick Tools
Quick Tools are for working with the PLC’s firmware and ALL-Link Database. These
are here for convenience and others may be added in the future.

Convert INC into UMP and Convert INC into SAL are utilities for converting assembler
include (INC) files into Unit Map files (UMP) or SALad source code files (SAL).

Zero Database (FC00-FFFF) clears the PLC’s Threaded ALL-Link Database
(ALDB/T)105 from hex address 0xFC00 to 0xFFFF by writing zeros into it. You can
also zero the ALL-Link Database from the PLC Database326 tab under Windows and
Inspectors.

Dev Guide, Chapter 11 Page 309

August 16, 2007 © 2005-2007 SmartLabs Technology

Options – Debugging
The Debugging tab contains controls for debugging sessions.

Auto-disconnect device after 5 consecutive access violations stops serial data flow if
faulty SALad code is generating an access violation storm that prevents you from
seeing where the code went awry.

Log all raw data into <specified log file> lets you designate a text file that will log
the data that appears in the Comm Window – Raw Data318 panel.

Options – Compiling
The Compiling tab contains controls for the compiler.

Prevent download when errors exist, when checked, will not download bytecode to
the PLC if the compiler generates errors. This option is checked by default.

Dev Guide, Chapter 11 Page 310

August 16, 2007 © 2005-2007 SmartLabs Technology

Options – Communications
The Communications tab has setup options and tools to control communication with
the PLC.

Press Find my PowerLinc Controller to check your serial ports for an attached PLC. If
a PLC is found, the port to which it is attached will appear in the Port: pulldown box.

If you want to manually designate the serial port that your PLC is attached to, you
can use the pulldown box directly. The pulldown box contains options for your
available COM (RS232) and USB ports. If you are using the PLC Simulator it does
not matter which option you choose.

Press the Connect Now button to establish a connection with your PLC over the port
designated in the Port: pulldown box. Pushing the Connect Now button will
automatically “push” the Test Connection button.

If you are already connected to your PLC, you can test the connection at any time by
pressing the Test Connection button.

Press Download Core Application to download a precompiled version of the
coreApp.sal SALad coreApp Program272 to your PLC. This file to be downloaded,
named coreApp.slb, is the one in the Program Files\Smarthome\Salad IDE\core
directory.

Press Advanced Commands… to toggle the appearance of a pulldown box containing
PLC command options that only apply to particular versions of the PLC. The
command shown, Set Daughterboard Monitoring OFF is for a Hardware Development
Kit. Press the Send button to actually send the chosen command to the PLC

Dev Guide, Chapter 11 Page 311

August 16, 2007 © 2005-2007 SmartLabs Technology

Options – Unit Defaults
The Unit Defaults tab controls settings for the PLC firmware.

Image Base: is the base address for the downloaded compiled SALad bytecode. This
should match the ‘org’ of the first executable code in the file you designate as ‘main’
in the Options – Project314 tab. The default is 0x0210.

Map File: lets you designate a unit map (UMP) file other than the one that the IDE
defaults to by auto-sensing which firmware version is running in your PLC.

Options – Directories
The Directories tab sets file search paths.

Enter the path to files that you would like the IDE to search for to be included in your
project. Press the button to open a standard dialog box to find a directory. If you
want multiple search paths, separate them with a semicolon. The default search
paths are your current project’s directory (usually under Smarthome\SALad
IDE\Projects), then the Smarthome\SALad IDE\Include directory, then the
Smarthome\SALad IDE\Core directory.

Dev Guide, Chapter 11 Page 312

August 16, 2007 © 2005-2007 SmartLabs Technology

Options – Editor
The Editor tab controls how the editor looks and behaves. You can also launch this
page directly from the editor by right-clicking anywhere in it and choosing Editor
Properties….

Use the Theme: pulldown box to select a previously saved collection of the color and
font settings on this page. The default theme is called standard. You can create
custom themes by choosing the editor options you want on this page and then
pressing Save Current Theme… to store the settings under a name you choose.
Whenever you launch the IDE, the editor will use the theme that last appeared in the
pulldown box.

To change the foreground or background color for text of a given type, click on the
color box and choose the color you want.

Check the BOLD box if you want text of the given type to appear bold, and check the
Use BG box if you want the specified background color to actually be used.

Use the Editor Font: pulldown box to choose the font for the editor.

 Check Show Code Hints if you want tooltips to appear as you type SALad
instructions. The tooltips show the parameters for the instruction and a brief
description of what it does.

Check Allow (ctrl-space) Code Completion Window if you want to see possible SALad
word completions by pressing Control-Space after you’ve typed a partial word.

Check Smart Tabs if you want the editor to automatically indent or outdent the next
line, depending on context, when you press Enter at the end of a code line.

Dev Guide, Chapter 11 Page 313

August 16, 2007 © 2005-2007 SmartLabs Technology

Set the number of spaces for a tab in the Tab Size: box. The default is 3. Tabs are
converted to spaces in saved files.

Options – Saving
The Saving tab sets file saving and backup options.

Check Save all files on close if you want the IDE to automatically save all open
source code files when you close the IDE. The files will be saved in whatever
condition they are in at the time, so be careful when using this option. The default is
unchecked.

Check Save all files on IDE errors if you want the IDE to automatically save all open
source code files whenever an error occurs in the IDE program. Then, if the IDE
crashes, when you restart it you will get a dialog box informing you that your files
were auto-recovered from backups, and giving you the option of keeping the auto-
recovered files or not. The default for this option is checked.

Check Backup files on load up to N levels if you want the IDE to automatically save
source code files with a bak extension whenever they are loaded. If you set the
number of levels greater than 1 (the default is 5), then bak files are first renamed
with an extension bk1, bk1 files are renamed bk2, and so forth. This option is
checked by default. NOTE: This option has not been implemented as of version
1.0.5.170 of the IDE.

Check Save all on download if you want the IDE to automatically save all open
source code files whenever you download compiled code to your PLC program. The
default is checked.

Dev Guide, Chapter 11 Page 314

August 16, 2007 © 2005-2007 SmartLabs Technology

Options – Loading
The Loading tab sets file loading options.

Check Automatically load all included files if you want the IDE to find and load any
files that you have named in a source file using an include "<filespec>"
statement. The default is checked.

Options – Project
The Project tab lets you designate the file containing the beginning of your SALad
program. If you do not do this, the compiler will not know where program execution
begins. This setting is persistent, meaning that the IDE will remember it between
sessions.

You can either type the name of the file in the text box, or you can right-click on the
file’s tab in the editor and choose Mark as main unit.

Dev Guide, Chapter 11 Page 315

August 16, 2007 © 2005-2007 SmartLabs Technology

IDE Windows and Inspectors
Windows and Inspectors is a collection of tools that you will find very useful when
using the IDE to create INSTEON applications using SALad. The main tools appear
under a set of tabs that look like this:

Choosing Comm Window317 will display a series of subtabs with more tools.

You can make the Windows and Inspectors pane collapse or expand quickly by
clicking anywhere in its title bar. You can resize the pane by dragging its top border.

In This Section

Compile Errors316
Lists errors the compiler finds and lets you jump to them in the editor for
debugging.

Comm Window317
Has a collection of subtabs that help you to see what is going on in the INSTEON
environment.

Trace325
Lets you inspect the execution history of your program to help you with
debugging.

PLC Database326
A tool for manipulating the ALL-Link Database in your PLC.

SIM Control327
Operates the PLC Simulator.

Dev Guide, Chapter 11 Page 316

August 16, 2007 © 2005-2007 SmartLabs Technology

Compile Errors
This page shows errors that the compiler finds. Each line displays an error number,
the filespec of the file containing the error, the line number and column positions of
the error within the file, and an error message. Double-clicking an error places you
on the offending line in the editor.

In the example above, an error was deliberately induced by changing a valid label
(tjump) to an invalid one (tjumpfoo). Double-clicking on one of the lines above
shows the error in the editor like this:

Dev Guide, Chapter 11 Page 317

August 16, 2007 © 2005-2007 SmartLabs Technology

Comm Window
The Comm Window has a number of sub-tabs that look like this:

In This Section

Comm Window – Raw Data318
Shows the serial data exchanged between the PLC and your PC.

Comm Window – PLC Events318
Displays PLC Events that have occurred.

Comm Window – INSTEON Messages319
Displays received INSTEON messages, and it lets you compose and send
INSTEON messages of your choosing.

Comm Window – X10 Messages320
Displays received X10 Commands, and it lets you compose and send X10
Commands of your choosing.

Comm Window – Conversation321
Allows you to have a two-way serial conversation with the PLC.

Comm Window – ASCII Window322
Displays text explicitly sent from a SALad program running on your PLC.

Comm Window – Debug Window323
Lets you directly inspect and alter bytes within your PLC.

Comm Window – Date/Time324
Gives you control over the realtime clock in the PLC and lets you test realtime
events.

Dev Guide, Chapter 11 Page 318

August 16, 2007 © 2005-2007 SmartLabs Technology

Comm Window – Raw Data
The Raw Data page shows the serial data exchanged between your PLC and your PC.

The data is displayed as hexadecimal bytes.

A T: precedes data transmitted from the PC to the PLC.

An S: precedes data transmitted from the PC to the PLC, but with any packet
formatting that may have been applied also displayed. In particular, USB
communications adds formatting as described in the section IBIOS USB Serial
Interface194 above.

An R: precedes data received by the PC from the PLC.

Comm Window – PLC Events
SALad is event-driven, meaning that SALad programs respond to events that occur
in the host environment. This page displays IBIOS Events that have occurred in the
PLC. See IBIOS Events185 for a list of events that SALad handles.

The left column displays the event number in hexadecimal, followed by the event
name and a description of the conditions that caused the event.

Dev Guide, Chapter 11 Page 319

August 16, 2007 © 2005-2007 SmartLabs Technology

Comm Window – INSTEON Messages
The INSTEON Messages page displays received INSTEON messages, and it lets you
compose and send INSTEON messages of your choosing.

The top section of this page displays INSTEON messages received by the PLC. See
Message Fields41 above for a description of the column headings.

The bottom section lets you compose and send an INSTEON message. You can
choose from a number of pre-composed commands using the pulldown box at the
left.

You can enter From and To Device Addresses41 in the text boxes by typing the 3-byte
address as three decimal numbers separated by periods. This is similar to the way
an IP address is specified on the Internet.

You can set the Message Type Flags42 the message using the check boxes.

Use the RemHops and TotHops boxes to set the Message Retransmission Flags43.

Enter the Command 1 and 244 that you want to send as hexadecimal bytes in the
respective boxes.

If you are sending an Extended-length message, enter the User Data44 in the
Extended Data text box. If you enter any data in this box, an Extended-length
message will be sent. If you enter more than 14 bytes, only the first 14 bytes will be
sent. If you enter fewer than 14 bytes, the remaining bytes will be sent as 0x00. If
you want to send a Standard-length message, clear this box.

You do not have to deal with the Message Integrity Byte44 (CRC) because the
INSTEON Engine handles this for you.

When you have composed the INSTEON message that you want, press the Send
INSTEON button to transmit it.

Dev Guide, Chapter 11 Page 320

August 16, 2007 © 2005-2007 SmartLabs Technology

Comm Window – X10 Messages
The X10 Messages page displays received X10 Commands, and it lets you compose
and send X10 Commands of your choosing.

The text box displays X10 traffic.

A T: precedes X10 Commands transmitted by the PLC.

An R: precedes X10 Commands received by the PLC.

To compose an X10 Command, choose its two bytes from the pulldown boxes, then
press the Send button.

Dev Guide, Chapter 11 Page 321

August 16, 2007 © 2005-2007 SmartLabs Technology

Comm Window – Conversation
The Conversation page allows you to have a two-way serial dialog with the PLC.

The text box displays the conversation in hexadecimal bytes.

A T: precedes hex bytes transmitted to the PLC.

An R: precedes hex bytes received from the PLC.

The yellow text box at the bottom allows you to type in hex bytes to send to the PLC.
The pulldown holds the history of your sent bytes.

Press the Send button to transmit the bytes displayed in the yellow text box.

If you would like to send an entire hex file to the PLC, press the Send Hex File…
button to choose and send the file. The hex file must be a text file containing 2-
character ASCII hex bytes separated by spaces or newlines, such as the files
produced by the compiler under the Files->Save Hex Values As… menu item.

The Firmware button sends 0x02 0x48, which requests the PLC’s firmware revision.
This is a convenient way to determine if a PLC is connected and listening.

Dev Guide, Chapter 11 Page 322

August 16, 2007 © 2005-2007 SmartLabs Technology

Comm Window – ASCII Window
The ASCII Window displays text explicitly sent from a SALad 2 program running on
your PLC.

Use the SerialSendBuffer command within a SALad program to generate messages
that will be displayed in this text box.

Dev Guide, Chapter 11 Page 323

August 16, 2007 © 2005-2007 SmartLabs Technology

Comm Window – Debug Window
The Debug Window lets you directly inspect and alter bytes within your PLC.

Enter plc in the Unit ID: box to inspect (peek) and write to (poke) bytes in your PLC.
If you want to peek and poke bytes in a remote INSTEON device, enter that device’s
INSTEON Address as, for example, 1.2.3.

Type the hex address you wish to inspect or write to in the Address: box. Press Get
Byte to fetch a single hex byte at that address and display it in the Value: box, or
else press Get Block to fetch a string of 32 hex bytes and display them all in the
lower box.

To poke a byte, type the hex byte you wish to poke at the given Address: in the
Value: box, then press Set Byte.

Dev Guide, Chapter 11 Page 324

August 16, 2007 © 2005-2007 SmartLabs Technology

Comm Window – Date/Time
The Date/Time page gives you control over the realtime clock (RTC) in the PLC and
lets you test realtime events. All times are in 24-hour ‘military’ format.

The System Time box displays the time according to your PC, and the PLC Time box
displays the time according to your PLC.

To synchronize your PLC to your PC, press the Set-> button. The time in the PLC
Time box will update to the system time.

To set the PLC’s RTC to an arbitrary date/time, enter the date and time you wish to
set in the boxes above the Set Date/Time of PLC button, then press that button. The
time in the PLC Time box will update within the next minute. To quickly restore the
date and time boxes to the current PLC time, press the Restore Date/Time Now
button.

Press the Test Set to Near Midnight button to set the PLC’s time to 23:59:45 so you
can test functions that occur at midnight.

Press the Clear RTC PowerOff button if you do not want the PLC’s RTC to save the
current time if the PLC loses power.

If you want to test timers that depend on the PLC’s minutes-from-midnight counter
(see IBIOS Event Details187 Note 8), you can set the counter by entering a value
from 0 to 1439 in the Min from Mid (Minutes from Midnight) box and pressing the Set
button to the right.

Enter a minutes-from-midnight value from 0 to 1439 in the Next Alarm box and
press the Set button to the right to cause an EVNT_ALARM (0x0E) IBIOS Event to
fire when the PLC’s minutes-from-midnight value matches the value you entered.
See IBIOS Event Details187 Note 8 for more information.

Press the Calc Sunset/Sunrise >>> button to fill in the boxes to the right with the
sunrise and sunset times for the PLC date. The box to the right gives the hour-
difference between the local time zone and GMT (Greenwich Mean Time).

Dev Guide, Chapter 11 Page 325

August 16, 2007 © 2005-2007 SmartLabs Technology

Trace
The Trace page lets you inspect the execution history of your program to help you
with debugging.

Tracing is active whenever you are in Debug mode (i.e. the Debug Mode checkbox is
checked).

The first column gives the hexadecimal address of the object code that was
executed.

The second column gives the line number and the source code filename of the line of
code that was executed.

The rightmost column shows the program statement that was executed.

Dev Guide, Chapter 11 Page 326

August 16, 2007 © 2005-2007 SmartLabs Technology

PLC Database
The PLC Database page is a tool for manipulating the ALL-Link Database in your PLC.
See INSTEON ALL-Link Database101 above for more information.

To examine the contents of the PLC’s ALL-Link Database, press Read Database. The
contents will appear in the text box at the right. If the text box is blank, the ALL-
Link Database is zeroed out.

To erase the ALL-Link Database by zeroing it out, press the Zero DB (FC00-FFFF)
button. Zeros will be written to addresses 0xfc00 to 0xffff in the PLC’s EEPROM
(nonvolatile memory).

To add an entry to the ALL-Link Database, type the INSTEON Address of the device
you wish to add in the ID: box, and the number of the ALL-Link Group you would like
the device to belong to in the Group: box, and then press the Add to PLC Database
button. When you enter the 3-byte INSTEON Address, type it as three decimal
numbers, ranging from 0 to 255, separated by periods (for example: 126.23.4).

To remove an entry from the ALL-Link Database, put the entry’s ID and ALL-Link
Group Number in the appropriate boxes, and then press Remove from PLC Database.

After zeroing the ALL-Link Database or adding or removing an ALL-Link Database
entry, you can press the Read Database button to see the effect of the change.

If you double-click on a line in the text box, the IDE will jump to the Comm Window
– Debug Window323 and display a hex dump of the bytes in the ALL-Link Database
starting at the address of the entry you double-clicked on.

As an example, if you press the Zero DB (FC00-FFFF) button, enter an ID of 2.3.4
and an ALL-Link Group of 1, press the Add to PLC Database button, and finally press
the Read Database button, the following line will appear in the text box:

(id=02.03.04,mode=sla,addr=FFE8,laddr=0000,g=1,cmds=00 00,d=00)

See Threaded ALL-Link Database (ALDB/T)105 above for the meaning of these fields.

Dev Guide, Chapter 11 Page 327

August 16, 2007 © 2005-2007 SmartLabs Technology

SIM Control
The SIM Control window operates the PLC Simulator. To use the PLC Simulator in
place of a real PLC, turn it on by choosing the Mode->Simulator menu item (see
Menu – Mode298).

The PLC Simulator Control Panel328 is at the upper left. The text box at the upper
right is a hex PLC Simulator Memory Dump329, and the text box at the bottom is a
PLC Simulator Trace330 of code execution. You can vary the size of the Trace box by
dragging its top border.

In This Section

PLC Simulator Control Panel328
Explains the controls at the top of the window.

PLC Simulator Memory Dump329
Shows how to view memory in the PLC Simulator.

PLC Simulator Trace330
Describes the trace information in the bottom text box.

Dev Guide, Chapter 11 Page 328

August 16, 2007 © 2005-2007 SmartLabs Technology

PLC Simulator Control Panel
This is what the PLC Simulator Control Panel section looks like:

A simulated SET Button (which you can press) and a simulated white Status LED
(which you can view) appear at the left.

You can simulate unplugging and plugging in the PLC using the Plugged In checkbox.
If you would like to simulate a factory reset, uncheck Plugged In, check Factory
Reset, then check Plugged In.

Check Overclock to run the simulated PLC’s realtime clock at very high speed
between events. This lets you easily test code that depends on realtime events
without waiting for the actual time to elapse or manually resetting the PLC’s clock to
fire an event.

Use the Speed control at the far right to slow down simulated execution speed. This
can be useful for debugging.

If you are simulating a PLC with a Hardware Development Kit (HDK) added, choose
the HDK from the Supplemental Sims: pulldown box.

You can cause the PLC Simulator to execute a string of ASCII text commands from a
macro file by typing the filespec for the macro file in the text box to the left of the
Execute button, then pressing the button. Contact info@insteon.net for the format
for the macro file.

To poke a byte or bytes into the PLC Simulator’s memory, enter the hex address to
poke to, and the hex byte(s) you want to poke, in the text boxes to the left of the
Poke button, and then press the button. If you are poking multiple bytes, separate
them with spaces.

To simulate the occurrence of an IBIOS Event, enter the Event Handle number (see
IBIOS Events185) in the text box to the left of the Event button, then press the
button.

Check the Show Output checkbox if you want the PLC Simulator Trace330 to display
code execution information.

Push the Erase button to blank the PLC Simulator Trace330 text box.

mailto:info@insteon.net�

Dev Guide, Chapter 11 Page 329

August 16, 2007 © 2005-2007 SmartLabs Technology

PLC Simulator Memory Dump
This is what the PLC Simulator Memory Dump section looks like:

To view memory contents in the PLC Simulator, enter a hex address, a range of
addresses, or some combination of addresses and ranges in the Memory Map View:
text box. The text box will immediately display the memory contents you specified.

Indicate an address range by typing a beginning and ending address separated by a
hyphen. Use a comma to separate multiple addresses or address ranges.

The memory dump normally refreshes automatically every few milliseconds. If for
some reason refreshing stops (if you switch serial ports, for instance), you can
restart it by typing anything in the Memory Map View: box.

Dev Guide, Chapter 11 Page 330

August 16, 2007 © 2005-2007 SmartLabs Technology

PLC Simulator Trace
This is what the PLC Simulator Trace section looks like:

Drag the border at the top to resize the text box.

Push the Erase button in the PLC Simulator Control Panel328 to blank the text box.

Check the Show Output checkbox in the PLC Simulator Control Panel328 if you want
the text box to display code execution information.

When Show Output is checked, trace information like that shown above with an
asterisk at the left will appear. Immediately following the asterisk is the hex address
of the code line that was executed, followed by the object code itself. Effects that
the code may have are shown to the right. For example,

0676:00->FF

means that memory location 0676 was changed from containing 00 to containing FF;
and

(comp=)0000<(0050)0676

means that a compare was done between the literal value 0000 and the contents of
the 16-bit value beginning at memory location 0050, namely 0676, and that 0000 is
less than 0676.

Whether or not the Show Output checkbox is checked, the text window will show
INSTEON messages and X10 Commands sent over the powerline by the PLC, as well
as both ASCII and hex data sent serially to your PC.

Dev Guide, Chapter 11 Page 331

August 16, 2007 © 2005-2007 SmartLabs Technology

IDE Virtual Devices
The Virtual Devices included in the SALad IDE allow you to develop SALad
applications without being connected to any external hardware—in other words, you
don’t need a connection to a real PowerLinc™ V2 Controller (PLC).

The key tool is the PLC Simulator332, which is a pure-software version of a real PLC
running on your PC. The PLC Simulator can do everything that a real PLC can do,
but it is more transparent, thanks to the special tools in the SIM Control327 window.

When you are using the PLC Simulator, you can also simulate a Virtual Powerline333
environment in software. Then, you can plug in any number of Virtual LampLinc334
devices to the Virtual Powerline to debug and test your SALad application.

Although very convenient for code development, simulation is no substitute for real-
world testing. Be sure to thoroughly shake out your application using real hardware
before pronouncing it finished!

In This Section

PLC Simulator332
Explains how to use the PLC Simulator.

Virtual Powerline333
Shows how to set up a software-simulated powerline environment.

Virtual LampLinc334
Explains how to add software-simulated LampLinc devices to the Virtual
Powerline.

Dev Guide, Chapter 11 Page 332

August 16, 2007 © 2005-2007 SmartLabs Technology

PLC Simulator
The PLC Simulator is a pure-software version of a real PLC running on your PC. To
use the PLC Simulator in place of a real PLC, turn it on by choosing the Mode-
>Simulator menu item (see Menu – Mode298).

The PLC Simulator can do everything that a real PLC can do, but it is more
transparent, thanks to a set of special software tools. These tools appear in the SIM
Control327 window, which looks like this:

For a complete explanation of how to use these tools, see the SIM Control327 section.

Dev Guide, Chapter 11 Page 333

August 16, 2007 © 2005-2007 SmartLabs Technology

Virtual Powerline
The Virtual Powerline is a software-simulated powerline environment that works in
conjunction with the PLC Simulator332. To turn it on, choose the Virtual Devices-
>Powerline menu item (see Menu – Virtual Devices299). The Virtual Powerline will
appear as a separate window that looks like this:

The button at the top will be labeled Enable Powerline if the Virtual Powerline is
currently disabled, or else it will say Disable Powerline while the Virtual Powerline is
enabled. To use the Virtual Powerline, enable it. If the PLC Simulator is not running,
turn it on, or if it is running, you may have to ‘Unplug’ it then ‘Plug’ it back in. When
the PLC Simulator is using the Virtual Powerline properly, the message

connection accepted

will appear in the Virtual Powerline’s text box. The same message will appear every
time you connect a virtual device, such as a Virtual LampLinc334. When you remove
a virtual device you will get the message

connection removed

You can place a message on the Virtual Powerline by typing the ASCII string you
want to send in the box to the left of the Place on PL button, then pressing the
button. The string you sent will appear in the text box.

INSTEON messages that appear in the Virtual Powerline will show up as hex bytes
preceded by A: in the text box.

To stop using the Virtual Powerline, close its window.

Dev Guide, Chapter 11 Page 334

August 16, 2007 © 2005-2007 SmartLabs Technology

Virtual LampLinc
Virtual LampLinc devices are software simulations of real SmartLabs LampLinc™ V2
Dimmers. Virtual LampLincs are connected to a Virtual Powerline333, which in turn
connects to a PLC Simulator332. To launch a Virtual LampLinc, choose the Virtual
Devices->LampLinc menu item (see Menu – Virtual Devices299). The Virtual
LampLinc will appear as a separate window that looks like this:

The text box labeled INSTEON Address (A.B.C) at the
top of the window contains the 3-byte ID of the Virtual
LampLinc. This will be a unique number for each
Virtual LampLinc that you launch. If you wish to
assign a different ID, type it in the text box as three
decimal digits separated by periods.

The Zone: pulldown box lets you place Virtual
LampLincs on the Virtual Powerline at varying
simulated distances from one another. The greater
the difference between Zone numbers, the greater the
simulated distance between LampLincs. This lets you
simulate powerline environments that require multiple
hops for INSTEON messages to get through (see
INSTEON Message Hopping49, above).

You can simulate plugging in or unplugging a Virtual
LampLinc with the button that will be labeled (IN) Click
to Unplug or else Plug In.

The black circle at the bottom right of the picture of
the LampLinc is the simulated SET Button, which you
can push with the mouse. The white circle below that
is the simulated white Status LED, which you can view.

The square at the bottom shows the current dimming
state of the Virtual LampLinc. Its color ranges from
black for off, through various shades of gray, to white
for full on.

You can launch multiple Virtual LampLincs by right-
clicking anywhere in a Virtual LampLinc window to
display a popup menu that looks like this:

Choose Spawn 4 more to create four more Virtual LampLincs, each in a separate
window, and each with a different INSTEON Address. Choose Auto-Position All to
neatly tile all open Virtual LampLinc windows. If you choose Auto-Position and Zone
All, groups of Virtual LampLincs will appear in different Virtual Powerline zones.
Choose Quit All to close all of the Virtual LampLinc devices at once.

Dev Guide, Chapter 11 Page 335

August 16, 2007 © 2005-2007 SmartLabs Technology

IDE Keyboard Shortcuts
The table below shows how you can use the keyboard to perform common actions in
the IDE.

Key Action

Ctrl-A Select all text in the currently displayed editor file

Ctrl-X Cut selected text in the currently displayed editor file

Ctrl-C Copy selected text in the currently displayed editor file

Ctrl-V Paste selected text in the currently displayed editor file

Ctrl-S Save the currently displayed editor file

Alt-G Go to line number

Ctrl-F Find a search string

Ctrl-R Find a search string and replace it with another string

Ctrl-Down Find next occurrence of search string

Ctrl-Up Find previous occurrence of search string

Ctrl-F4 Close currently displayed source file

Ctrl-(left mouse click) If cursor is on an ‘Include’ file, open the file

F2 (in debug mode) Stop the program

F8 (in debug mode) Single Step the program

F9 (not in debug mode) Compile and Download the program to the PLC

F9 (in debug mode) Run the program

Dev Guide, Chapter 12 Page 336

August 16, 2007 © 2005-2007 SmartLabs Technology

Chapter 12 — SmartLabs Device
Manager (SDM) Reference

This chapter documents the SmartLabs Device Manager (SDM). SDM is in the class
of Manager Applications31, which are programs that run on computing devices
external to an INSTEON network and expose a high-level interface to the outside
world.

In This Chapter

SDM Introduction337
Gives an overview of the SDM and lists system requirements.

SDM Quick Test338
Gets you up and running using either a browser or SDM’s Main Window.

SDM Commands340
Lists the available SDM Commands.

SDM Windows Registry Settings357
Gives the Windows Registry settings that SDM uses.

Dev Guide, Chapter 12 Page 337

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Introduction
The SmartLabs Device Manager™ (SDM) is a communication and translation gateway
to The SmartLabs PowerLinc Controller28 (PLC). Developers use simple text
commands (Home Networking Language™) through ActiveX or HTTP calls to
communicate over INSTEON or X10 without the hassle of dealing with USB packets
or RS232 resource issues.

These commands will also be extended to PowerLinc/IP and other Internet
transports.

Using the SmartLabs Device Manager, developers can focus on their application,
whether in Macromedia Flash®, Java®, .NET® or even in a Word® document, Excel®
spreadsheet, or a PowerPoint® presentation.

Commands such as "SetOnLevelText=01.02.03,ON" perform the action and return a
response, providing developers with simple and reliable control. Additional
commands such as "speak," inet," and "mailto" further provide the developer with
powerful capabilities.

SDM System Requirements
SDM Platforms

Windows XP, 2000, NT (serial only), Me, 98, and 95 (serial only).

SDM Programming Platforms
any language that provides either ActiveX, HTTP, or shell calls including (Java,
VB, .NET, C#, C++, Delphi, Flash, Perl, ASP, PHP, VB/W/JScript, Tcl, Python and
more).

SDM Resources
HTTP Server uses port 9020 and offers a server-pull method to facilitate firewalls.
Connects via COM1~COM255 or USB.

PowerLinc Controller Firmware Requirement
2.8 or better

Dev Guide, Chapter 12 Page 338

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Quick Test
You can get the SDM up and running quickly using either a browser or SDM’s Main
Window.

In This Section

SDM Test Using a Browser338
Use a browser like Internet Explorer or FireFox to interface with SDM.

SDM Test Using SDM’s Main Window339
Use SDM’s Main Window to interface with SDM.

SDM Test Using a Browser
1. Run SmartLabs Device Manager (SDM2Server.exe). An icon will appear in

your systray (normally at the lower right of your screen).

2. Run a browser (such as Internet Explorer or FireFox).

3. Type http://localhost:9020/abc.txt?isResponding into the browser as the
URL.

4. You should see a textual response isresponding=False or isresponding=True with
other cached responses.

Dev Guide, Chapter 12 Page 339

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Test Using SDM’s Main Window
1. Run SmartLabs Device Manager (SDM2Server.exe). An icon will appear in

your systray (normally at the lower right of your screen).

2. Single-click on the icon and SDM’s Main Window will appear.

3. Type isresponding into the bottom text box and press Send.

4. You should see a textual response isresponding=False or isresponding=True with
other cached responses.

Dev Guide, Chapter 12 Page 340

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Commands
This section lists and explains the available SDM Commands.

SDM Commands are not case-sensitive.

In This Section

SDM Commands – Getting Started341
Utility commands for managing the PLC.

SDM Commands – Home Control342
Commands for controlling INSTEON and X10 devices.

SDM Commands – Notification Responses343
Notifications of INSTEON, X10, and serial communication reception.

SDM Commands – Direct Communications344
Low-level INSTEON, X10, and serial communication commands.

SDM Commands – Memory345
Commands for reading and writing PLC memory.

SDM Commands – PLC Control347
Commands for managing the PLC, including the realtime clock.

SDM Commands – Device Manager Control350
Commands for managing the SDM itself.

SDM Commands – ALL-Link Database Management352
Commands for searching and setting ALL-Link Databases in the PLC and remote
INSTEON devices.

SDM Commands – Timers354
Commands to create and delete timers, and to manage sunrise and sunset times.

Dev Guide, Chapter 12 Page 341

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Commands – Getting Started
To turn on a lamp, plug in a PLC and a LampLinc V2 Dimmer, connect the PLC to
your PC, then send these commands in the order given.

port=<PLCport>

Sets the sticky, global PLC port (COM#|USB4|SIM28|?). Sending a question mark '?'
causes the port to be searched for. Use getport= to read the found port. The port
is saved in the registry and reused upon restart of the SDM.

Examples: port=COM1

or: port=USB4

or: port=?

or: port=SIM28

isResponding

Asks the SDM if the port is responding (sends 0x02 0x48) and responds true or false.
This also reads the map for proper name-based downloading. This is the ultimate
heartbeat method to determine if the PLC is connected and talking.

Example: isResponding

Returns: isResponding=true

downloadCoreApp[=clear]

Downloads the included SALad coreApp to the PLC so that it can communicate to the
SDM. The optional =clear parameter also instructs the coreApp to clear the ALL-Link
Database after downloading. Automatically resets the PLC after downloading.

Example: downloadCoreApp

addID=<remoteINSTEONid>[<group>][,<isMaster=true>]

Adds a device's ID to the PLC's ALL-Link database, optionally specifying the ALL-Link
Group number and whether the device is a Controller (master) or Responder (slave).

Example: addID=04.05.06

setOnLevelText=<INSTEONid>, <onLevelCmdOrValue>[,<hops>]

Sets the On-Level status (ON|OFF|dec%|dec|0xHex) of an ID, optionally specifying
the number of hops. Default is 3 hops.

Examples: setOnLevelText=04.05.06,ON

or: setOnLevelText=04.05.06,49%

or: setOnLevelText=04.05.06,127

or: setOnLevelText=04.05.06,0x7F

Dev Guide, Chapter 12 Page 342

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Commands – Home Control
setOnLevelText=<INSTEONid>, <onLevelCmdOrValue>[,<hops>]

Sets the On-Level status (ON|OFF|dec%|dec|0xHex) of an ID, optionally specifying
the number of hops. Default is 3 hops.

Examples: setOnLevelText=04.05.06,ON

or: setOnLevelText=04.05.06,49%

or: setOnLevelText=04.05.06,127

or: setOnLevelText=04.05.06,0x7F

getOnLevelText=<INSTEONid>[,<hops>]

Gets the On-Level status from an ID as a text representation, optionally specifying
the number of hops. Defaults to 3 hops. Returns ON, OFF, OUT, or percentage of on
(1-99%).

Example: getOnLevelText=04.05.06

Returns: getOnLevelText=04.05.06,ON

or: getOnLevelText=04.05.06,49%

sendX10=<addressOrCommand>[,<addressOrCommand>]

Sends X10 addresses and commands.

Examples: sendX10=A1,AON

or: sendX10=A1,A2

or: sendX10=AON

sendGroupBroadcast=<groupID>,<cmd1>[,<cmd2>][,<hops>]

Sends an ALL-Link Broadcast from the PowerLinc Controller with the included ALL-
Link Group number, Command 1 (ON|OFF|hex), optional Command 2 (defaults to 0),
and optional Max Hops (defaults to 3).

sendInsteonDirect | SID=<id>,<attribute=value>

Sends an INSTEON message.

Example: SID=02.03.04,OnLevel=ON

sendInsteonDirectResponse | SIDR=<id>,<attribute=value>

Same as SendInsteonDirect, but waits for an Acknowledge message.

Example: SIDR=02.03.04,OnLevel=ON

Dev Guide, Chapter 12 Page 343

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Commands – Notification Responses
These are for uninitiated messages.

eventRaw=<eventID>

Notification of an event in hexadecimal.

Example: eventRaw=0A

receiveX10=<AddressOrCommand>

Notification of an X10 address or command received, in text.

Examples: receiveX10=A1

or: receiveX10=A On

receiveX10Raw=<x10type> <AddressOrCommandByte>

Notification of an X10 address or command received, in hexadecimal form. x10type
is 0 for an address, or 1 for a command.

Example: receiveX10Raw=00 66

receiveINSTEONRaw=<eventID> <messageBytes...>

Notification of an INSTEON message received. The number of bytes varies
depending upon the eventID and whether the message is Standard-length or
Extended-length.

Example: receiveINSTEONRaw=02 04 05 06 00 00 11 8F 01 00

enrolled=<INSTEONid>,<deviceInfoBytes>,<deviceName>

Notification that an INSTEON device was enrolled in the PLC’s ALL-Link Database.

usbArrival=<VendorID>,<ProductID>,<Version>,<Company>,<ProductName>

Notification that the PLC was connected. Specific to PLC from SmartLabs.

Example: usbArrival=4287,4,1024,SmartHome,SmartHome PowerLinc USB E,

usbUnplugged=4287,4,1024,,,

Notification that the PLC was disconnected (once connected). Specific to PLC from
SmartLabs)

Example: usbUnplugged=4287,4,1024,,,

Dev Guide, Chapter 12 Page 344

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Commands – Direct Communications
These are for raw, low-level communication.

sendINSTEONRaw=<9 or 23 hexadecimal bytes>

Sends the 9 (Standard-length) or 23 (Extended-length) INSTEON bytes from the
PLC.

Example: sendINSTEONRaw=01 02 03 04 05 06 0F 11 FF

The example sends from unit 01.02.03 (which is overwritten with the PLC’s actual
ID) to unit 04.05.06, an SD message with 3 hops (0x0F), a Light ON INSTEON
Command (0x11), at full brightness (0xFF).

sendRecINSTEONRaw | SRIR=<9 or 23 hexadecimal bytes>

Sends the 9 (Standard-length) or 23 (Extended-length) INSTEON bytes from the
PLC, and waits for the response (ACK/NAK message).

Examples: sendRecINSTEONRaw=01 02 03 04 05 06 0F 11 FF

or: SRIR=01 02 03 07 08 09 0F 13 00

Returns: SRIR=04,07 08 09 01 02 03 2F 13 00 (the returned ACK message
response).

getOnLevelRaw=<INSTEONid>[,<hops>]

Gets the On-Level status from an ID as a hexbyte representation, optionally
specifying the number of hops. (Defaults to 3 hops). Returns 00-FF.

Example: getOnLevelRaw=04.05.06

Returns: getOnLevelRaw=04.05.06,7F

setOnLevelRaw=<INSTEONid>,<onLevelCmdOrValue>[,<hops>]

Sets the On-Level status of an ID as a hexbyte representation, optionally specifying
the number of hops. (Defaults to 3 hops). Returns 00-FF.

Example: setOnLevelRaw=04.05.06,7F

Returns: setOnLevelRaw=04.05.06,7F

sendX10Raw=<x10type>,<AddressOrCommandByte>

Sends an X10 address or command byte. x10type is zero (0) for an address, or one
(1) for a command.

Example: sendX10Raw=00, 66 (sends X10 address A1).

sendPLC=<data...>

Sends direct raw hexadecimal bytes to the PLC, as if through a direct connection
such as serial USB or RS232.

Example: sendPLC=02 40 01 65 00 01 FF 33 66

sendEventRaw=<eventID>

Sends an event (00-FF) for the PLC to execute (see IBIOS Event Summary Table185).

Dev Guide, Chapter 12 Page 345

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Commands – Memory
setImage=<address>,<hexdata...>

Downloads data to PLC at thegiven address (map-friendly).

Examples: setImage=0x0040,02 FF

or: setImage=NTL_TIMERS,02 FF

getImage=<address>,<length>

Uploads a block of memory from the PLC to the PC. Returns hex bytes (map-
friendly).

Example: getImage=0x0040,2

Returns: getImage=0x0040,00 00

saveImage=<address>,<length>,<filename>

Gets a block of memory from the PLC and saves it to a file.

Example: saveImage=0x0210,2,image.txt

setBit=<address>,<bit>[,<setTo0or1>]

Sets the bit (0-7) at the address (map-friendly) with an optional value of 1 (set) or 0
(clear); defaults to 1.

Examples setBit=0x0040,4

or: setBit=0x0040,4,0

clearBit=<address>,<bit>

Clears the bit (0-7) at the given address (map-friendly).

Example: clearBit=0x0040,4

getWord

Gets a two-byte word from the PLC. Returns the address specified, the two bytes at
this address (msb, lsb), the decimal value of the two bytes, and the equivalent of the
two bytes in time format (HH:MM).

Example: getWord=0x0210

Returns: getWord=0x0210,02 30,560,09:20

repeatGetByte=<address>,<bytecount>

Repeatedly gets two bytes for load testing the SDM.

Example: repeatGetByte=0x0210,5.

This example queries two bytes at location 0x0210 five times.

downloadCoreApp[=clear]

Downloads the included SALad coreApp to the PLC so that it can communicate to the
SDM. The optional =clear parameter also instructs the coreApp to clear the ALL-Link
Database after downloading. Automatically resets the PLC after downloading.

Example: downloadCoreApp

Dev Guide, Chapter 12 Page 346

August 16, 2007 © 2005-2007 SmartLabs Technology

downloadSALadFile=<filename>

Downloads the SALad program with the given filename (as a binary/compiled file,
not hex). Automatically resets the PLC after downloading.

Example: downloadSALadFile=coreUser.slb

downloadBinaryFile=<address>,<filename>

Downloads the binary file with the given filename to the given address. This
command does not automatically reset the PLC after download.

Example: downloadBinaryFile=<0x2000>,myTable.bin

setPath

Sets the search path for expected files.

Example: setPath=c:\mysaladfiles

getPath

Gets the search path for expected files.

Example: getPath

Returns: getPath=c:\mysaladfiles

verifyCoreApp

Returns true if the currently downloaded SALad application matches the expected
SALad coreApp.

Example: verifyCoreApp

Returns: verifyCoreApp=true

salad

Returns true for a valid SALad application loaded in the PLC. Returned vid and pid
are specific to the manufacturer, and rev is the SALad application’s revision number.

Example: salad

Returns: salad=true,vid=0001,pid=0003,rev=000C.

unlockSALad

Disables SALad code protection to allow downloads of SALad code.

Example: unlockSALad

lockSALad

Enables SALad code protection to prevent overwriting SALad code (default on
powerup).

Example: lockSALad

isSALadLocked

Returns the status of the SALad code protection lock.

Example: isSALadLocked

Dev Guide, Chapter 12 Page 347

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Commands – PLC Control
port=<PLCport>

Sets the sticky, global PLC port (COM#|USB4|SIM28|?). Sending a question mark '?'
causes the port to be searched for. Use getport= to read the found port. The port
is saved in the registry and reused upon restart of the SDM.

Examples: port=COM1

or: port=USB4

or: port=?

or: port=SIM28

getPort

Returns the current sticky, global PLC port.

Example: getPort

Returns: getport=USB4

getFirmware

Returns the PLC firmware revision.

Example: getFirmware

Returns: getFirmware=2.9

sendHardReset

Resets the SALad application, reinitializes (fires the IBIOS Event EVNT_ INIT).

getClock

Gets the PLC’s Running Clock, which is reset from the PLC’s Realtime Clock on
powerup or initialization of the SALad coreApp.

Example: getClock

Returns: getClock=true,8/12/2005 5:03:39 PM

getRTClock

Gets the current Realtime Clock.

Example: getRTClock

Returns: getRTClock=true,8/12/2005 5:03:39 PM

setClock

Sets both the Realtime Clock and the Running Clock.

Example: setClock=8/12/2004 5:03:39 PM

setRunningClock

Sets only the Running Clock, not the Realtime Clock. Next time the PLC is plugged in
or reset, coreApp will reset the Running Clock with the time from the Realtime Clock.

Example: setRunningClock=8/12/2004 5:03:39 PM

Dev Guide, Chapter 12 Page 348

August 16, 2007 © 2005-2007 SmartLabs Technology

setRTClock

Sets only the Realtime Clock, not the Running Clock. Next time the PLC is plugged in
or reset, coreApp will reset the Running Clock with the time from the Realtime Clock.

Example: setRTClock=8/12/2004 5:03:39 PM

getDST

Returns the PLC’s current daylight savings time settings.

Example: getDST

connect

Connects to the PLC after a disconnection. Connecting is automatic at startup.

Example: connect

disconnect

Disconnects the PLC's port connection.

Example: disconnect

isResponding

Asks the SDM if the port is responding (sends 0x02 0x48) and responds true or false.
This also reads the map for proper name-based downloading. This is the ultimate
heartbeat method to determine if the PLC is connected and talking.

Example: isResponding

Returns: isResponding=true

GetPLCStatus

Returns a set of statuses for PowerLinc Controller (port, connection, etc).

Example: getPLCStatus

help

Provides a quick visual list of commands.

Example: help

getMyID

Returns the PLC's ID (INSTEON Address).

Example: getMyID

Returns: getMyID=01.02.03

diag1

Does a first-level diagnosis of the PLC. Returns true or false.

Example: diag1

Returns: diag1=true

debugAnimate=<map|<mapfile>|true>

Causes PLC to return its code pointer, optionally with SALad mapping.

Example: debugAnimate=true.

Dev Guide, Chapter 12 Page 349

August 16, 2007 © 2005-2007 SmartLabs Technology

debugOff

Turns off code pointer information from debugAnimate.

Example: debugOff.

Dev Guide, Chapter 12 Page 350

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Commands – Device Manager Control
setTextMode=<textmode>

Sets the global communication format that the SDM uses to receive and respond.
Currently 'text' (default) and 'flash' are supported. 'flash' mode adds ampersands
(&) around each response in order for the loadVariables() function to receive values
from Macromedia Flash or SwishMax-type clients.

nop

Does nothing, but allows an HTTP connection to return collected data to the client.

echo

Echoes the text simply to see if the ActiveX or HTTP communication is working.

_localBytes=<true|false>

Turns local (window) SDM byte-level debugging on or off. Opposite of remoteBytes.

remoteBytes=<true|false>

Turns local (window) SDM byte-level debugging on or off. Opposite of _localBytes.

setBlocked=<true|false>

Turns global blocking of commands on or off. Default is off (false). When blocked,
the action is executed before receiving a response and returning to the client. When
not blocked, the client is returned a true response that the command was accepted
for execution by the SDM. When the actual response is received by the SDM, it is
sent to the client via ActiveX, or queued for return via HTTP. (Use NOP to get results
when no execution action is necessary).

setPageSizeThrottle=<true|false>

Allows global throttling of the downloads in case of errors. Default is true. The
download page size shrinks when multiple consecutive errors are received. The page
size grows when multiple consecutive successes are received.

setPageErrors=<maxErrorCount>

Sets the global maximum number of consecutive retries before a download actually
fails. Default is 7.

setPageSize=<pageSize>

Sets the global packet size for downloading. Default is 32. When throttling is true,
this value automatically shrinks and grows.

if=<Command>,<matchResult>,<trueText>[,<falseText>]

Executes the command, then matches against the matchResult. If true, returns the
trueText. If false (and the falseText is present), returns the falseText.

Example: if=getFirmware,2.9,good,bad

ifExec=<Command>,<matchResult>,<trueCommand>[,<falseCommand>]

Executes the command, then matches against the matchResult. If true, executes
the trueCommand. If false (and the falseCommand is present), executes the
falseCommand.

Example: ifExec=getFirmware,2.9,"setOnLevelText=00.02.BA,ON",nop

Dev Guide, Chapter 12 Page 351

August 16, 2007 © 2005-2007 SmartLabs Technology

setAuthUsername=<username>

Allows the user to set an authorization username for the http/web connection to
require. Shipped default is empty - no authorization required.

Example: setAuthUsername=me

setAuthPassword=<password>

Allows the user to set an authorization password for the http/web connection to
require. Shipped default is empty - no authorization required. To clear, send
setAuthPassword with no password.

Example: setAuthPassword=12345

icon=<hide|show>

Hides or shows the SDM icon.

Example: icon=hide

repeat=<times>,<command>

Repeats a command for testing the SDM.

Example: repeat=5,setOnLevelText=00.57.75,on

dm

Opens the edit field with focus on white space.

cls

Closes the log.

closeDM or haltDM or exitDM

These are different ways to force a shutdown of the SDM.

Dev Guide, Chapter 12 Page 352

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Commands – ALL-Link Database
Management

addID=<remoteINSTEONid>[<group>][,<isMaster=true>]

Adds a device's ID to the PLC's ALL-Link database, optionally specifying the ALL-Link
Group number and whether the device is a Controller (master) or Responder (slave).

Example: addid=04.05.06

removeID=<remoteINSTEONid>

Deletes a device's ID from the PLC's ALL-Link database.

Example: removeID=04.05.06

getRemoteRecord=<INSTEONid>, <record number>[,<end-range record
number>]

Gets and block-returns remote ALL-Link Database records.

Examples: getRemoteRecord=04.05.06,2

or: getRemoteRecord=04.05.06,2,3

Returns: getremoterecord=
=====RECORDS BEGIN=====
remoterec(04.05.06):#2:A2 01 00 D0 80 FE 1F 00
remoterec(04.05.06):#3:A2 02 00 6B C2 FE 1F 00
=====RECORDS END=====

getLinks

Returns a block-list of ALL-Link Database records in the PLC.

Example: getLinks

getRemoteGroupRecord=[<recno>:] <remoteINSTEONid>, <groupID>
[,<sourceINSTEONid>] [,<hops>]

Scans the remoteINSTEONid's Linear (non-PLC) ALL-Link Database for the sourceID
(defaults to PLC's ID) and groupID, or uses the recno provided. Returns full record
information as getRemoteGroupRecord=<remoteINSTEONid>, <sourceINSTEONid>,
<groupID>, <onLevelText>, <rampRate>

Example: getRemoteGroupRecord=04.05.06, 1

Returns: getRemoteGroupRecord=04.05.06, 01.02.03,1,50%,31

setRemoteGroupRecord=[<recno>:] <remoteINSTEONid>,
<groupID>,<sourceINSTEONid>,<hops>, <newPresetDim>, <newRampRate>

Scans the remoteINSTEONid's Linear (non-PLC) ALL-Link Database for the sourceID
(defaults to PLC's ID), and groupID, or uses the recno provided. Sets full ALL-Link
Database record information.

Examples: setRemoteGroupRecord=1:04.05.06, 1, 01.02.03,3,50%,31

or: setRemoteGroupRecord=04.05.06, 1, 01.02.03,3,50%,31

setPresetDim=<remoteINSTEONid>, <groupID>, <newPresetDim>
[,<sourceINSTEONid>] [,<hops>]

Dev Guide, Chapter 12 Page 353

August 16, 2007 © 2005-2007 SmartLabs Technology

Sets the preset On-Level value for the PLC or sourceINSTEONid (defaults to PLC's
ID) in the remoteINSTEONid's database.

Example: setPresetDim=04.05.06, 1, 25%

setRampRate=<remoteINSTEONid>, <groupID>, <newRampRate>
[,<sourceINSTEONid>] [,<hops>]

Sets the Ramp Rate value for the PLC or sourceINSTEONid (defaults to PLC's ID) in
the remoteINSTEONid's ALL-Link Database. Ramp rate values are 0x00 (slow) to
0x1F (fast).

Example: setPresetDim=04.05.06, 1, 0x1F

getPresetDim=<remoteINSTEONid>, <groupID>, [,<sourceINSTEONid>]
[,<hops>]

Gets the preset On-Level value for the PLC or sourceINSTEONid (defaults to PLC's
ID) in the remoteINSTEONid's ALL-Link Database.

Example: getPresetDim=04.05.06, 1

getRampRate=<remoteINSTEONid>, <groupID>, [,<sourceINSTEONid>]
[,<hops>]

Gets the Ramp Rate value for the PLC or sourceINSTEONid (defaults to PLC's ID) in
the remoteINSTEONid's ALL-Link Database. Ramp rate values are 0x00 (slow) to
0x1F (fast).

Example: setPresetDim=04.05.06, 1

exportLinks=<filename>

Saves the PLC’s ALL-Link Database to a file.

Example: exportLinks=links.txt

importLinks=<filename>

Loads the PLC’s ALL-Link Database from a file.

Example: importLinks=links.txt

Dev Guide, Chapter 12 Page 354

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Commands – Timers
Before adding or using timers, you must download the timerCoreApp.slb file and use
the clearTimers command once. This resets all internal tables before you can add
timers. Also, for using sunset/sunrise, you need to set your state and city
(setStateCity) or lat/long (setLatLong) and download the sunset table
(downloadSunTable).
downloadSALadFile=timerCoreApp.slb

Downloads the timer core application, required for timer usage. Downloading will
prevent you from listing timers until clearTimers is used.
ClearTimers

Clears the timer tables. Eliminates all timers and resets timer variables.
setTimersXML

Sets all Timers using XML. Send the XML string without any newlines embedded.

Example: setTimersXML=<Timers><ItemCount>1</ItemCount><Timer><TID
Name=”Some & Timer”>2</TID><DeviceList><Device DID=”1”
Address=”00.02.C2” HouseCode=”” UnitCode=”” OnLevel=”60%”>1</Device>
</DeviceList><TOD>19:00</TOD><PlusMinusMin>+3</PlusMinusMin><DOW>M</DOW
><Security>N</Security></Timer></Timers>

Returns formatted XML:

setTimersXML=
<Timers>
 <ItemCount>1</ItemCount>
 <Timer>
 <TID Name=”Some & Timer”>2</TID>
 <DeviceList>
 <Device DID=”1” Address=”00.02.C2” HouseCode=”” UnitCode=””
OnLevel=”60%”>1</Device>
 </DeviceList>
 <TOD>19:00</TOD>
 <PlusMinusMin>+3</PlusMinusMin>
 <DOW>M</DOW>
 <Security>N</Security>
 </Timer>
</Timers>

getTimersXML

Gets all Timers in an XML string. See getTimersXML for format.

listTimers

Block-lists the currently existing timers. Returns <recordnumber>,
<active|inactive>, <time|sunrise±mins|sunset±mins>, <INSTEON-ID:onlevel |
INSTEON: 6bytes>, <DOW>, <SEC|NOSEC>. See addTimer for DOW and
SEC|NOSEC information.

Example: listTimers

Returns: listtimers=beginlist
timer=1,active,19:53,04.05.06:OFF,SuSaFThWTuM,NOSEC
timer=2,active,20:00,04.05.06:50%,SuSaFThWTuM,NOSEC

Dev Guide, Chapter 12 Page 355

August 16, 2007 © 2005-2007 SmartLabs Technology

timer=3,active,19:59,INSTEON:04 05 06 4F 11 00,M,SEC
timer=4,active,sunset+20,04.05.06:OFF,SuSaFThWTuM,NOSEC
endlist
getTimer=<recordnumber>

Same as listTimers, except lists a single timer (not block-listed) specified by
<recordnumber>.

Example: getTimer=2

Returns: timer=2,active,20:00,04.05.06:50%,SuSaFThWTuM,NOSEC.
diagTimers

Checks over the timer format for format errors and reports them.

Example: diagTimers.
setStateCity=<state>,<city>

Sets the latitude and longitude and sunrise/sunset information based on a state and
city name. The user interface can enumerate the information located in places.csv
and places.idx. You can query getLatLong or getSunrise or getSunset after
setting the state and city.

Examples: setStateCity=CA,IRVINE

or: setStateCity=California,Tustin
setLatLong=<latitude>,<longitude>

Sets the latitude and longitude and sunrise/sunset information. You can query
getLatLong or getSunrise or getSunset after setting this.

Example: setLatLong=33.684065,-117.792581
getLatLong

Returns the currently set latitude and longitude used for sunrise and sunset
calculations.

Example: getLatLong

Returns 33.684065,-117.792581
downloadSunTable

Verifies that the TimerCoreApp is installed and downloads the sunrise/sunset table
(based on latitude and longitude) to the PLC for use within the TimerCoreApp. This
is required once to enable the sunrise/sunset time specifications.

Example: downloadSunTable

getSunrise

Returns today's sunrise time as calculated using setStateCity or setLatLong.

Example: getSunrise

Returns 8/30/2005 6:24:00 AM
getSunset

Returns today's sunset time as calculated using setStateCity or setLatLong.

Dev Guide, Chapter 12 Page 356

August 16, 2007 © 2005-2007 SmartLabs Technology

Example: getSunset

Returns: 8/30/2005 7:20:00 PM
interpretSunTable

Returns the sunrise and sunset times for the whole year

Example: interpretSunTable.
getNextAlarmTime

Returns the PLC's next scheduled alarm time. For timers that have <SEC|NOSEC>
set to SEC, the returned time will be the actual time that the alarm will fire, which
will occur randomly in the interval from 15 minutes before to 15 minutes after the
alarm setting time. When the minutes-from-midnight (getMinutes) matches the
getNextAlarmTime, the alarm or alarms that match will fire.

Example: getNextAlarmTime

Returns: HH:MM such as 14:25
setNextAlarmTime=HH:MM

Sets the PLC's next alarm time. Useful to skip alarms, if desired, while they remain
set for the next day.

Example: setNextAlarmtime=18:00

This example skips all timers until 6pm today.
getMinutes

Returns the PLC's Running Clock, set on initialization and auto-incremented each
minute.

Example: getMinutes

Returns HH:MM such as 15:25.
setMinutes=HH:MM

Sets the PLC's Running Clock, normally set on initialization and auto-incremented
each minute. Useful to debug timers by setting the PLC's match for alarms without
actually changing the PLC's Realtime Clock.

Example: setMinutes=18:00

Dev Guide, Chapter 12 Page 357

August 16, 2007 © 2005-2007 SmartLabs Technology

SDM Windows Registry Settings
The SDM's root location is:

HKEY_CURRENT_USER\Software\Smarthome\ SmarthomeDeviceManager

Valuename: port = <port> - sticky global port for SDM to connect - USB4 or COM1
to COM255. Set from the port= command.

Valuename: servername = <exefilename> - SDM's executable for clients to
autorun.

Valuename: usehttp = <true|false> - allow the http server to accept connections.
(Defaults to true)

Valuename: httpport = <portnumber> - when the http server activates, the server
uses this port (Defaults to 9020).

Dev Guide, Chapter 13 Page 358

August 16, 2007 © 2005-2007 SmartLabs Technology

Chapter 13 — INSTEON Hardware
Documentation

In This Chapter

INSTEON Hardware Development Kit (HDK) Reference359
Describes the INSTEON Hardware Development Kit (HDK) for building and testing
powerline applications.

SmartLabs Powerline Modem (PLM) Hardware Reference367
Gives the schematics and bills of materials for the SmartLabs Powerline Modem™
Main Board using the IN2680A chip, along with designs for RS232 and Ethernet
Daughter Boards.

Dev Guide, Chapter 13 Page 359

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Hardware Development Kit
(HDK) Reference
In This Section

Hardware Development Kit Overview359
Gives an overview of INSTEON HDK including block diagrams and physical
diagrams of the HDK unit.

Hardware Development Kit Schematics363
Shows schematics for the HDK Main Board (Isolated and Non-Isolated) and HDK
Daughter Board.

Hardware Development Kit Overview
The HDK consists of a Main Board and a Daughter Board.

HDK Main Board
There are two basic HDK Main Board designs: Isolated (for interfacing to the
powerline without a direct electrical connection), and Non-Isolated (for building
into insulated devices like light switches that have direct access to 120 VAC). The
HDK available for purchase from SmartLabs contains an Isolated Main Board only.
The Non-Isolated design presented here is for reference only, and SmartLabs
assumes no liability for its use.

The Main Board consists of:

• INSTEON Powerline Interface

• TTL-level Serial Communications Interface

• INSTEON Micro Controller Unit (MCU)

• INSTEON ALL-Linking User Interface (Button / LED)

• Power Supply

HDK Daughter Board
The Daughter Board brings out the signals from the Main Board, and it has an
experimental area for you to develop your circuitry.

The Daughter Board consists of:

• Experimental Design Area

• Button for connecting Daughter Board Interrupt line to ground

• LED connected to one General Purpose I/O line

When connected to the Non-Isolated Main Board, the Daughter Board can make
use of the following hardware:

• LED to simulate Load Control

• 11 Extra General Purpose I/O lines

• 120 VAC

Dev Guide, Chapter 13 Page 360

August 16, 2007 © 2005-2007 SmartLabs Technology

Functional Block Diagram
This diagram shows the functional blocks on each board. The Main Board serves as
the INSTEON modem. The INSTEON chip executes SALad application code. The
Daughter Board functions as a place to develop OEM circuits.

INSTEON HDK Hardware Block Diagram
INSTEON Main Board

O
ptional E

E
P

R
O

M I2C

Level Converter

HDK Daughter Board

RS232 Tranceiver

OEM Experimental Circuit Design Area

1 General Purpose I/O Line
11 General Purpose I/O Lines (Non-Isolated Only)

Power Line Interface
Power Line Tx Power Line Rx Load Control

120VAC (Non-Isolated Only)

User Interface

LED Button

INSTEON MCU

Power Supply

22.1184 MHz Xtal

RS232 4800,8,N,1

Daughter Board Interrupt

RTC

EEPROM

32.768 KHz Xtal

TTL RS232
JP 1

I2C Bus

Dev Guide, Chapter 13 Page 361

August 16, 2007 © 2005-2007 SmartLabs Technology

HDK Physical Diagrams
This diagram shows the physical dimensions of the HDK unit.

HDK Physical Dimensions

Dev Guide, Chapter 13 Page 362

August 16, 2007 © 2005-2007 SmartLabs Technology

HDK Daughter Board
This diagram shows the HDK Daughter Board, and where signals and parts are
located on the board.

Dev Guide, Chapter 13 Page 363

August 16, 2007 © 2005-2007 SmartLabs Technology

Hardware Development Kit Schematics
In This Section

HDK Isolated Main Board Schematic364
Gives the schematic diagram of the Isolated Main Board.

HDK Non-Isolated Main Board Schematic365
Gives a reference schematic diagram of the Non-Isolated Main Board.

HDK Daughter Board Schematic366
Gives the schematic diagram of the Daughter Board.

Dev Guide, Chapter 13 Page 364

August 16, 2007 © 2005-2007 SmartLabs Technology

HDK Isolated Main Board Schematic

Dev Guide, Chapter 13 Page 365

August 16, 2007 © 2005-2007 SmartLabs Technology

HDK Non-Isolated Main Board Schematic
This non-isolated design is only intended for those experts who are developing
products that must achieve the lowest possible cost while still communicating over
the powerline. To reduce the part count, the power supply connects directly to the
110-volt mains, so potentially lethal voltages are exposed. SmartLabs assumes no
liability for use of this design.

Dev Guide, Chapter 13 Page 366

August 16, 2007 © 2005-2007 SmartLabs Technology

HDK Daughter Board Schematic

Dev Guide, Chapter 13 Page 367

August 16, 2007 © 2005-2007 SmartLabs Technology

SmartLabs Powerline Modem (PLM)
Hardware Reference

This section gives a reference design for using the IN2680A Powerline Modem chip in
a module connected both to the powerline and to a host device. The design uses a
main board for the modem chip, power supply, INSTEON powerline interface, and
TTL-level serial communications, and a daughter board for interfacing to a host.

Two different daughter board designs are included. One is for an RS232 interface,
and the other is for an IP (Ethernet) interface. A USB interface is under
development. Developers may create their own daughter cards to implement
custom interfaces.

The reference design presented here is the same one that SmartLabs uses for its
Powerline Modem™ (PLM) module.

In This Section

SmartLabs Powerline Modem (PLM) Main Board368
Gives the schematic and bill of materials for the PLM Main Board.

SmartLabs PLM Serial (RS232) Daughter Board372
Gives the schematic and bill of materials for the Serial (TTL RS232) Daughter
Board.

SmartLabs PLM Ethernet (IP) Daughter Board375
Gives the schematic and bill of materials for the Ethernet (IP) Daughter Board.

Dev Guide, Chapter 13 Page 368

August 16, 2007 © 2005-2007 SmartLabs Technology

SmartLabs Powerline Modem (PLM) Main
Board

The SmartLabs Powerline Modem™ (PLM) main board includes the IN2680A Powerline
Modem chip, a transformer-isolated power supply with a 30-volt charge pump
booster, a transformer-coupled powerline signal transponder, an optically-isolated
zero crossing detector, and an 8-pin daughter board connector for TTL-level host
communications.

In This Section

SmartLabs PLM Main Board Schematic369
Gives the schematic and bill of materials for the PLM main board.

SmartLabs PLM Main Board Bill of Materials370
Specifies the parts used in the main board.

Dev Guide, Chapter 13 Page 369

August 16, 2007 © 2005-2007 SmartLabs Technology

SmartLabs PLM Main Board Schematic

Dev Guide, Chapter 13 Page 370

August 16, 2007 © 2005-2007 SmartLabs Technology

SmartLabs PLM Main Board Bill of Materials

Description Part Type Desig-
nator

Footprint Remark

Capacitor Electrolytic, 1000uF, 25V C1 Through-hole, 0.2"

Capacitor Metal Polyester, 0.22uF,
250VDC

C2 Through-hole, 0.3"

Capacitor Ceramic, 0.0015uF, 100V C3 SMT, 0805

Capacitor Metal Polyester, 0.68uF,
250VDC

C4 Through-hole, 0.4"

Capacitor Electrolytic, 100uF, 6.3V C5 Through-hole, 0.1"

Capacitor Ceramic, 0.001uF, 25V C6 SMT, 0603

Capacitor Ceramic, 0.001uF, 25V C7 SMT, 0603

Capacitor Electrolytic, 470uF, 50V C8 Through-hole, 0.2"

Capacitor Ceramic, 0.1uF,25V C9 SMT, 0603

Capacitor Ceramic, 220pF, 25V C10 SMT, 0603

Capacitor Ceramic, 27pF, 25V C11 SMT, 0603

Capacitor Ceramic, 27pF, 25V C12 SMT, 0603

Crystal 22.1184MHz, 18pF Load Y1 Through-hole Recommended:
Citizen model
CMR309T22.1184MABJTR

Diode DL4004 D1 SMT, MELF

Diode DL4004 D2 SMT, MELF

Diode DL4004 D3 SMT, MELF

Diode DL4004 D4 SMT, MELF

Diode Zener, 5.1V, 1W D5 SMT, MELF

Diode DL4004 D6 SMT, MELF

Diode Zener, 5.1V, 1W D7 SMT, MELF

Diode 1N4148 D8 SMT, Mini-MELF

Diode 1N4148 D9 SMT, Mini-MELF

Diode Zener, 68V, 1/2W D10 SMT, Mini-MELF

Diode Zener, 39V, 1W D11 SMT, MELF

Diode 1N4148 D12 SMT, Mini-MELF

Header 5-Pin male J3 Through-hole, 0.1" ctr For in-circuit programming

Header 2X4 male J4 Through-hole, 0.1" ctr Used to connect to
daughter boards

Inductor 2.7mH, 8-9 ohms DCR,
100mA DCI

L1 Through-hole, 0.2"

LED Any single color is acceptable LED1 Through-hole, T1

MCU INSTEON IN2680A U3 SMT, SSOP20

MOSFET N-Channel, Zetex
ZXMN6A07F

Q4 SMT, SOT-23

Optocoupler 100% Transfer ratio @ 8mA
IF and 5mA IC

U2 SMT Recommended:
Fairchild 4N25SM or
4N25S

Regulator 78L05 Positive 5V regulator U1 Through-hole, TO-92

Resistor 15KW, 1/16W, 5% R1 SMT, 0603

Resistor 27W, 1/2W, 5% R2 SMT, 1210 Recommended:
Panasonic ERJ-P14J27OU
Anti-Surge

Dev Guide, Chapter 13 Page 371

August 16, 2007 © 2005-2007 SmartLabs Technology

Description Part Type Desig-
nator

Footprint Remark

Resistor 330W, 1/10W, 5% R3 SMT, 0805

Resistor 100KW, 1/16W, 5% R4 SMT, 0603

Resistor 33KW, 1/16W, 5% R5 SMT, 0603

Resistor 10KW, 1/16W, 5% R6 SMT, 0603

Resistor 2.2KW, 1/16W, 5% R7 SMT, 0603

Resistor 15W, 1/2W, 5% R8 SMT, 2010

Resistor 1KW, 1/16W, 5% R9 SMT, 0603

Resistor 1K, 1/16W, 5% R10 SMT, 0603

Resistor 10KW, 1/16W, 5% R11 SMT, 0603

Resistor 2.2KW, 1/16W, 5% R12 SMT, 0603 May be changed to control
LED brightness

Resistor 10KW, 1/16W, 5% R13 SMT, 0603

Resistor 100KW, 1/16W, 5% R14 SMT, 0603

Resistor 1KW, 1/16W, 5% R15 SMT, 0603

Resistor 100KW, 1/4W, 5% R16 SMT, 1206

Switch Tact Switch SW1 Through-hole

Transformer Power Transformer, model
710-2000512

T1 Through-hole Custom made, available
from SmartLabs

Transformer Power line transformer coil T2 Through-hole Abracon AIRV-111 PLC

Transistor 2N4403 PNP Q1 SMT, SOT-23

Transistor 2N2222A NPN Q2 SMT, SOT-23

Transistor BST-52 Darlington NPN Q3 SMT, SOT-89 Recommended brand:
Zetex

Varistor 150VAC Metal Oxide Varistor MOV1 Through-hole, 0.2"

Wire Hot wire, black, 16AWG,
300V, 105°C, VW-1

J1 Through-hole In from power prong

Wire Neutral wire, white, 16AWG,
300V, 105°C, VW-1

J2 Through-hole In from power prong

Dev Guide, Chapter 13 Page 372

August 16, 2007 © 2005-2007 SmartLabs Technology

SmartLabs PLM Serial (RS232) Daughter
Board

The Serial Daughter Board attaches to the Powerline Modem™ (PLM) Main Board
using an 8-pin connector, and to a host device using an RJ-45 jack. Host
communications uses the RS232 protocol at TTL signal levels.

In This Section

SmartLabs PLM Serial Daughter Board Schematic373
Gives the schematic and bill of materials for the serial (RS232) Daughter Board.

SmartLabs PLM Serial Daughter Board Bill of Materials374
Specifies the parts used in the Serial Daughter Board.

Dev Guide, Chapter 13 Page 373

August 16, 2007 © 2005-2007 SmartLabs Technology

SmartLabs PLM Serial Daughter Board Schematic

Dev Guide, Chapter 13 Page 374

August 16, 2007 © 2005-2007 SmartLabs Technology

SmartLabs PLM Serial Daughter Board Bill of Materials

Description Part Type Desig-
nator

Footprint Remark

Capacitor Ceramic, 0.1uF, 25V C1 SMT, 0603

Capacitor Electrolytic, 100uF, 6.3V C2 Through-hole

Capacitor Electrolytic, 1uF, 25V C3 Through-hole

Capacitor Electrolytic, 1uF, 25V C4 Through-hole

Capacitor Electrolytic, 1uF, 25V C5 Through-hole

Capacitor Electrolytic, 1uF, 25V C6 Through-hole

Diode 1N4148 D1 SMT, Mini-MELF

Diode 1N4148 D2 SMT, Mini-MELF

Driver /
Receiver

MAX232 Multichannel RS-
232 ST232BDR

U2 SMT, SOIC16

EEPROM 24LC32A U3 SMT, SOIC8

Fuse 250V, 0.4A F1 Through-hole

Header Female 2x4, 2x4PIN,
2.54mm, 2185-20

J1 Through-hole, 0.1” ctr

Jack Female RJ45 J2 SMT

Resistor 1.5KΩ, 1/16W, 5% R1 SMT, 0603

Resistor 1KΩ, 1/16W, 5% R2 SMT, 0603

Voltage
Regulator

5V Zetex ZSR500G U1 SMT, SOT223

Dev Guide, Chapter 13 Page 375

August 16, 2007 © 2005-2007 SmartLabs Technology

SmartLabs PLM Ethernet (IP) Daughter
Board

The IP (Ethernet) Daughter Board attaches to the SmartLabs Powerline Modem™
(PLM) Main Board using an 8-pin connector, and to an Ethernet LAN using an RJ-45
jack.

In This Section

SmartLabs PLM Ethernet (IP) Daughter Board Schematic376
Gives the schematic and bill of materials for the IP (Ethernet) Daughter Board.

SmartLabs PLM Ethernet (IP) Daughter Board Bill of Materials377
Specifies the parts used in the IP Daughter Board.

Dev Guide, Chapter 13 Page 376

August 16, 2007 © 2005-2007 SmartLabs Technology

SmartLabs PLM Ethernet (IP) Daughter Board
Schematic

Dev Guide, Chapter 13 Page 377

August 16, 2007 © 2005-2007 SmartLabs Technology

SmartLabs PLM Ethernet (IP) Daughter Board Bill of
Materials

Description Part Type Desig-
nator

Footprint Remark

Capacitor Ceramic, 0.1uF, 25V C1 SMT, 0603

Capacitor Electrolytic, 100uF, 6.3V C2 Through-hole, 0.1"

Capacitor Ceramic, 0.1uF, 25V C3 SMT, 0603

Capacitor Ceramic, 15pF, 25V C4 SMT, 0603

Capacitor Ceramic, 15pF, 25V C5 SMT, 0603

Capacitor Ceramic, 0.1uF, 25V C6 SMT, 0603

Capacitor Ceramic, 0.1uF, 25V C7 SMT, 0603

Capacitor Ceramic, 0.1uF, 25V C8 SMT, 0603

Capacitor Ceramic, 22pF, 25V C9 SMT, 0603

Capacitor Ceramic, 22pF, 25V C10 SMT, 0603

Capacitor Ceramic, 0.1uF, 25V C11 SMT, 0603

Capacitor Ceramic, 0.1uF, 25V C12 SMT, 0603

Capacitor Ceramic, 0.1uF, 25V C13 SMT, 0603

Capacitor Ceramic, 0.1uF, 25V C14 SMT, 0603

Capacitor Ceramic, 0.1uF, 25V C15 SMT, 0603

Capacitor Ceramic, 0.1uF, 25V C16 SMT, 0603

Capacitor Ceramic, 0.1uF, 25V C17 SMT, 0603

Capacitor Ceramic, 0.1uF, 25V C18 SMT, 0603

Controller
Ethernet controller, Realtek
RTL8019AS U4 SMT, QFP-100

Crystal
19.6608MHz Crystal, 18pF
Load

Y1 Through-hole

Crystal 20MHz Crystal, 18pF Load Y2 SMT

Header 5-Pin Male J2 Through-hole, 0.1" ctr For in-circuit programming

Jack RJ45 Female jack J4 SMT

MCU PIC18F452-I/PT U3 SMT, TQFP-44

Memory 24LC256-I/SN U2 SMT, SOP-8

Regulator 78L05 5V Voltage regulator U1 SMT, SOT-223

Resistor 4.7KW, 1/16W, 5% R1 SMT, 0603

Resistor 1KW, 1/16W, 5% R2 SMT, 0603

Resistor 4.7KW, 1/16W, 5% R3 SMT, 0603

Resistor 10KW, 1/16W, 5% R5 SMT, 0603

Resistor 200W, 1/16W, 5% R6 SMT, 0603

Transformer
Ethernet transformer,
Abracon ALAN-107

T1 SMT

Developer’s Guide Page 378

August 16, 2007 © 2005-2007 SmartLabs Technology

CONCLUSION

“Everything should be made as simple as possible, but not simpler.”

Albert Einstein (1879-1955)

Electronic Home Improvement™ is poised to become a major industry of the twenty-
first century. Two-thirds of homes in the U.S. have computers and 87% of those are
connected to the Internet4. WiFi wireless networking is in 20% of broadband-
connected homes5. High-def TV is falling in price and gaining momentum
dramatically. But light switches, door locks, thermostats, smoke detectors, and
security sensors cannot talk to one another. Without an infrastructure networking
technology, there can be no hope for greater comfort, safety, convenience, and
value brought about through interactivity. Homes will remain unaware that people
live in them.

For a technology to be adopted as infrastructure, it must be simple, affordable, and
reliable. Not all technology that gets developed gets used. Sadly, a common pitfall
for new technology is overdesign—engineers just can’t resist putting in all the latest
wizardry. But with added performance, cost goes up and ease-of-use goes down.

Simplicity is the principal asset of INSTEON. Installation is simple—INSTEON uses
existing house wiring or the airwaves to carry messages. INSTEON needs no
network controller—all devices are peers. Messages are not routed—they are
simulcast. Device addresses are assigned at the factory—users don’t have to deal
with network enrollment. Device linking is easy—just press a button on each device
and they’re linked.

Simplicity ensures reliability and low-cost. INSTEON is not intended to transport lots
of data at high speed—reliable command and control is what it excels at. INSTEON
firmware, because it is simple, can run on the smallest microcontrollers using very
little memory—and that means the lowest-possible cost.

Developing applications for INSTEON-networked devices is also simple. Designers do
not have to worry about the details of sending and receiving INSTEON messages,
because those functions are handled in firmware. Application developers can use a
simple scripting interface and SmartLabs’ Device Manager to further simplify the
interface to a network of INSTEON devices. Designers who wish to create new kinds
of INSTEON devices can write the software for them using their favorite development
tools and an INSTEON Modem (IM), or they can use SmartLabs’ Integrated
Development Environment and the SALad embedded language.

Although INSTEON is simple, that simplicity is never a limiting factor, because
INSTEON Bridge devices can connect to outside resources such as computers, the
Internet, and other networks whenever needed. SALad-enabled INSTEON devices
can be upgraded at any time by downloading new SALad programs. Networks of
INSTEON devices can evolve as the marketplace does.

SmartLabs’ mission is to make life more convenient, safe and fun. INSTEON
provides the infrastructure that can make that dream come true. Anyone can now
create products that interact with each other, and with us, in remarkable new ways.
The future is now!

Developer’s Guide Page 379

August 16, 2007 © 2005-2007 SmartLabs Technology

GLOSSARY

This glossary is in alphabetical order. Bold terms in a definition refer to other
glossary entries.

ACK Message. See INSTEON Acknowledgement Message.

ALDB, ALDB/T, ALDB/L. See ALL-Link Database (ALDB).

ALL-Linking™. A method for associating INSTEON Controller buttons with groups
of (one or more) INSTEON Responders such that the Responders
instantly revert to a memorized state when the button is pushed. Users
can manually ALL-Link INSTEON devices by pressing and holding a
Controller Button, and then pressing and holding a Responder’s SET
Button, or they can use software.

ALL-Link Broadcast. An INSTEON Message containing an ALL-Link Command
sent by an INSTEON Controller to all members of an ALL-Link Group
at once. ALL-Link Broadcasts allow all members of an ALL-Link Group to
respond instantly to an ALL-Link Command. Controllers follow up an ALL-
Link Broadcast by sending ALL-Link Cleanup messages individually to
each member of the ALL-Link Group.

ALL-Link Cleanup. An INSTEON Message containing an ALL-Link Command
sent by an INSTEON Controller individually to each member of an ALL-
Link Group. A sequence of ALL-Link Cleanups will be aborted by new
INSTEON traffic on the INSTEON Network. ALL-Link Cleanups follow an
ALL-Link Broadcast sent to all members of the ALL-Link Group at once.

ALL-Link Command. An INSTEON Command that causes an ALL-Link Group of
INSTEON Responder devices to revert to the state they were in at the
time they were ALL-Linked to the INSTEON Controller issuing the ALL-
Link Command. Controllers first send an ALL-Link Broadcast
Command to all members of an ALL-Link Group, and then follow up by
sending ALL-Link Cleanup Commands individually to each member of
the ALL-Link Group.

ALL-Link Database (ALDB). In an INSTEON Controller, a set of records in
nonvolatile memory, each of which associates an ALL-Link Group
established by the Controller with an INSTEON Responder. In an
INSTEON Responder, a set of records in nonvolatile memory, each of
which associates a state of the Responder with an ALL-Link Group
established by a Controller. A Threaded ALL-Link Database (ALDB/T) is
much faster to search than a Linear ALL-Link Database (ALDB/L).

ALL-Link Group. An association between a button or function on an INSTEON
Controller and one or more INSTEON Responder devices.

BiPHY™. An INSTEON Device that communicates using both the powerline and
radio.

coreApp. A SALad program running in the SmartLabs PowerLinc Controller
(PLC) that interfaces serially to a computing device and handles

Developer’s Guide Page 380

August 16, 2007 © 2005-2007 SmartLabs Technology

INSTEON Messages, X10 commands, IBIOS events, ALL-Linking, and
other functions.

DevCat. See INSTEON Device Category.

Dual Mesh™ Network. A network whose nodes may communicate by
Simulcasting over the powerline, via radio, or both (BiPHY).

ED. See INSTEON Message Types.

Hops. See INSTEON Message Hopping.

i1/RF. The original INSTEON radio frequency signaling protocol employed by the i1
INSTEON Engine. i2/RF replaces i1/RF, although the two protocols may
coexist without mutual interference.

i2/RF. The INSTEON radio frequency signaling protocol employed by the i2
INSTEON Engine. i2/RF replaces i1/RF, although the two protocols may
coexist without mutual interference.

IBIOS. The INSTEON Basic Input/Output System that implements the basic
functionality of INSTEON Devices like the SmartLabs PowerLinc
Controller (PLC).

IID. See INSTEON ID.

IM. See INSTEON Modem.

INSTEON™. A Dual Mesh (powerline and radio) networking technology for home
control and sensing that uses simulcasting to propagate messages simply,
affordably, and reliably among INSTEON Devices.

INSTEON Acknowledgement Message. A Direct (SD or SC) INSTEON Message
returned to the sender when a message recipient receives a Direct (SD,
ED, or SC) INSTEON Message from the sender. Acknowledgement
messages are always Standard-length, and they normally echo the
received Command 1 and Command 2 bytes unless the received INSTEON
Command is a specific request for data. Depending on the Message Flags
bits, Acknowledgement Messages may return an ACK (SDK or SCK) or a
NAK (SDN or SCN) to the sender.

INSTEON Address. See INSTEON ID.

INSTEON Command. A one- or two-byte code occupying the Command 1 field or
both the Command 1 and Command 2 fields of an INSTEON Message. The
INSTEON Command Tables document defines all valid INSTEON
Commands. The meaning of an INSTEON Command depends on the type
of INSTEON Message that contains it, namely SD (Standard-length
Direct), ED (Extended-length Direct), SB (Standard-length Broadcast), SA
(Standard-length ALL-Link Broadcast), or SC (Standard-length ALL-Link
Cleanup).

INSTEON Controller. An INSTEON Device that sends INSTEON Commands to
INSTEON Responders.

INSTEON Device. A module attached to an INSTEON Network adhering to the
INSTEON Conformance Specification. INSTEON Devices may act as
INSTEON Controllers, INSTEON Responders, or both. INSTEON
devices may contain their own user interfaces or control circuitry, or they

Developer’s Guide Page 381

August 16, 2007 © 2005-2007 SmartLabs Technology

may interact with other devices via dedicated communication channels
such as USB or Ethernet.

INSTEON Device Category (DevCat). A one-byte hexadecimal number stored in
an INSTEON Device’s nonvolatile memory, broadly indicating what
function the device performs. The interpretation of Direct (SD and ED)
INSTEON Commands depends on a device’s DevCat. It is the
responsibility of INSTEON Controllers to determine the DevCat of an
INSTEON Responder before sending it an SD or ED INSTEON
Command.

INSTEON Device Subcategory (SubCat). A one-byte hexadecimal number stored
in an INSTEON Device’s nonvolatile memory, further differentiating the
device within its DevCat. Legacy INSTEON Devices may be uniquely
identified by their DevCat and SubCat numbers, but new devices should
use the INSTEON Product Key (IPK) instead.

INSTEON Engine. Firmware in an INSTEON Device that handles the low-level
INSTEON Message protocol, including Hops and Retries. The current
i2 INSTEON Engine replaces the original i1 INSTEON Engine.

INSTEON ID (IID). Also known as INSTEON Address, a unique 3-byte number
assigned to each INSTEON Device at the factory and stored in
nonvolatile memory. A device’s INSTEON ID serves as its permanent
address on an INSTEON Network. Because INSTEON IDs are
preassigned, users do not have to enroll INSTEON Devices in an INSTEON
Network.

INSTEON Message. Formatted data sent by one INSTEON Device to other
INSTEON Devices over an INSTEON network. Standard-length INSTEON
Messages contain a 3-byte From Address, a 3-byte To Address, a Message
Flags byte, a 2-byte INSTEON Command, and a Message Integrity (CRC)
byte. In addition, Extended-length INSTEON Messages contain 14 bytes
of User Data preceding the CRC byte.

INSTEON Message Hopping. A method for repeating INSTEON Messages by
simulcasting. When an INSTEON Device hears an INSTEON Message, it
inspects the 2-bit Max Hops and 2-bit Hops Remaining fields of the
Message Flags byte. If Hops Remaining is not zero, the device will
decrement the Hops Remaining field in the message and then retransmit
the message at a precise time based on the powerline zero crossing
interval. Because multiple devices may hear and retransmit the message
simultaneously, the energy in the retransmitted message grows, much
like the sound of many voices in a choir singing at once. See Message
Simulcasting.

INSTEON Message Retrying. Additional attempts to send a Direct INSTEON
Message if the message addressee fails to respond with an INSTEON
Acknowledgement Message. The INSTEON Engine automatically
retries messages up to five times, each time incrementing the Max Hops
field up to the maximum of three.

INSTEON Message Timeslot. The time interval required to send an INSTEON
Message, including all outgoing message Hops, and to receive an
INSTEON Acknowledgement Message (if expected), including all
acknowledgement message hops. Powerline message timeslots are

Developer’s Guide Page 382

August 16, 2007 © 2005-2007 SmartLabs Technology

synchronized to the powerline zero crossing. RF message timeslots have
the same duration but are not necessarily synchronized to the powerline.

INSTEON Message Types. There are 16 logically possible INSTEON Message
Types denoted by four bits in the Message Flags byte within an INSTEON
Message. A three-letter mnemonic designates the INSTEON Message
Type. The first letter is S for Standard-length or E for Extended-length
messages. The second letter is D for Direct, B for Broadcast, A for ALL-
Link Broadcast, or C for ALL-Link Cleanup messages. The third letter,
which is optional, is O for Outgoing, K for ACK, or N for NAK messages.
Valid Outgoing INSTEON Message Types are SD, ED, SA, SC, and SB.
Valid INSTEON Acknowledgement Message Types are SDK, SDN, SCK,
and SCN.

INSTEON Modem (IM). INSTEON chips or modules that provide a simple serial
interface to INSTEON Engine functions, ALL-Linking, ALL-Link
Database (ALDB) management, ALL-Link Cleanup messages, X10
powerline interfacing, and INSTEON Acknowledgement Messages.

INSTEON Network. A collection of INSTEON Devices using the INSTEON
networking protocol to communicate with each other via powerline,
radio, or both.

INSTEON Product Database (IPDB). An online or local database containing
records accessible using an INSTEON Product Key (IPK) stored in an
INSTEON Device. Each record contains detailed XML-formatted
information about the device’s capabilities.

INSTEON Product Key (IPK). A three-byte number stored in an INSTEON
Device’s nonvolatile memory that serves as a unique lookup key to the
online INSTEON Product Database (IPDB).

INSTEON Responder. An INSTEON Device that executes the INSTEON
Commands received within INSTEON Messages sent by INSTEON
Controllers.

IPDB. See INSTEON Product Database.

IPK. See INSTEON Product Key.

Message Routing. A common networking protocol that involves finding optimum
paths for messages to travel from node to node over a network. With
message routing, only one node in the network transmits a message at
any given time. Routed networks must contain nodes capable of
computing routing tables for messages, and must provide methods for
nodes to join, leave, and move around the network. Compare with
Message Simulcasting.

Message Simulcasting. A method for increasing the reliability of message delivery
in a network. When a node in a network sends a message, every other
node that hears the message retransmits it at precisely the same time
based on a global clock, provided that the message has not already been
retransmitted some maximum number of times. Message propagation is
more robust because each node adds its energy to the signal, much like
voices in a choir. Simulcasting is much simpler than Message Routing,
because there are no routing tables to maintain and nodes can join the
network without any installation procedure.

Developer’s Guide Page 383

August 16, 2007 © 2005-2007 SmartLabs Technology

NAK Message. See INSTEON Acknowledgement Message.

Note Key. An abbreviation used within the INSTEON Command Tables designating
special properties of INSTEON Commands.

PLC. See SmartLabs PowerLinc Controller.

PLM. See Powerline Modem.

Powerline. The electrical wiring that delivers power within a building.

Powerline Modem (PLM). An INSTEON Modem that only communicates over the
powerline.

Radio. For the purposes of INSTEON wireless signaling, the unlicensed band from
902 to 924 MHz.

Retries See INSTEON Message Retrying.

RF. Radio frequency (see Radio).

RFM. See RF Modem.

RF Modem (RFM). An INSTEON Modem that only communicates using radio.

Routing. See Message Routing.

SA, SB, SC, SD. See INSTEON Message Types.

SALad. An event-driven embedded language interpreter built into some INSTEON
Devices, such as the SmartLabs PowerLinc Controller (PLC). SALad
programs typically handle events generated by an IBIOS in firmware, but
they can do much more. SALad programs are downloadable to SALad-
enabled devices over the INSTEON Network.

SDM. See SmartLabs Device Manager.

Simulcasting. See Message Simulcasting.

SmartLabs Device Manager (SDM). A communication and translation gateway to
the SmartLabs PowerLinc Controller (PLC). Developers use simple
text commands through ActiveX or HTTP calls to interface with an
INSTEON Network.

SmartLabs PowerLinc™ Controller (PLC). The SmartLabs PowerLinc™ V2
Controller is an INSTEON-to-Serial (USB or RS232) Bridge for connecting
an INSTEON network to a computing device. Using the PLC, application
developers can create high-level user interfaces to INSTEON Devices on
an INSTEON Network. The PLC runs a SALad program called coreApp
that handles IBIOS events.

SubCat. See INSTEON Device Subcategory.

Timeslot. See INSTEON Message Timeslot.

X10. A legacy powerline signaling method used by many devices already deployed
around the world. INSTEON and X10 are compatible on the powerline,
and many INSTEON Devices can send and receive X10 signals. The
SmartLabs PowerLinc™ Controller (PLC) and INSTEON Modems
support X10.

Developer’s Guide Page 384

August 16, 2007 © 2005-2007 SmartLabs Technology

NOTES

1. Battery operated INSTEON RF devices, such as security sensors and handheld
remote controls, must conserve power. Accordingly, they may optionally be
configured so that they do not retransmit INSTEON messages from other
INSTEON devices, but act as message originators only. Such devices can
nevertheless both transmit and receive INSTEON messages, in order to allow
simple setup procedures and to ensure network reliability.

2. At a minimum, X10 compatibility means that INSTEON and X10 signals can
coexist with each other on the powerline without mutual interference. INSTEON-
only powerline devices do not retransmit or amplify X10 signals. But X10
compatibility also means that designers are free to create hybrid INSTEON/X10
devices that operate equally well in both environments. By purchasing such
hybrid devices, current users of legacy X10 products can easily upgrade to
INSTEON without making their X10 investment obsolete.

3. Firmware in the INSTEON Engine handles the CRC byte automatically, appending
it to messages that it sends, and comparing it within messages that it receives.
Applications post messages to and receive messages from the INSTEON Engine
without the CRC byte being appended. See Message Integrity Byte44 for more
information.

4. See GAO Telecommunications Report: May 2006 (GAO-06-426.

5. See
http://www.wirelessweek.com/article/CA6334955.html?spacedesc=Departments.

http://www.gao.gov/�
http://www.wirelessweek.com/article/CA6334955.html?spacedesc=Departments�

